Spaces:
Running
Running
File size: 27,402 Bytes
aa2c910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
from typing import List, Dict
import numpy as np
import librosa
import nltk
import eng_to_ipa as ipa
import re
from collections import defaultdict
from loguru import logger
import time
from src.AI_Models.wave2vec_inference import (
Wave2Vec2Inference,
Wave2Vec2ONNXInference,
export_to_onnx,
)
# Download required NLTK data
try:
nltk.download("cmudict", quiet=True)
from nltk.corpus import cmudict
except:
print("Warning: NLTK data not available")
class Wav2Vec2CharacterASR:
"""Wav2Vec2 character-level ASR with support for both ONNX and Transformers inference"""
def __init__(
self,
model_name: str = "facebook/wav2vec2-large-960h-lv60-self",
onnx: bool = False,
quantized: bool = False,
):
"""
Initialize Wav2Vec2 character-level model
Args:
model_name: HuggingFace model name
onnx: If True, use ONNX runtime for inference. If False, use Transformers
onnx_model_path: Path to the ONNX model file (only used if onnx=True)
"""
self.use_onnx = onnx
self.sample_rate = 16000
self.model_name = model_name
# Check thử path của onnx model có tồn tại hay không
if onnx:
import os
if not os.path.exists(
"wav2vec2-large-960h-lv60-self"
+ (".quant" if quantized else "")
+ ".onnx"
):
export_to_onnx(model_name, quantize=quantized)
self.model = (
Wave2Vec2Inference(model_name)
if not onnx
else Wave2Vec2ONNXInference(
model_name,
"wav2vec2-large-960h-lv60-self"
+ (".quant" if quantized else "")
+ ".onnx",
)
)
def transcribe_to_characters(self, audio_path: str) -> Dict:
try:
start_time = time.time()
character_transcript = self.model.file_to_text(audio_path)
character_transcript = self._clean_character_transcript(
character_transcript
)
phoneme_like_transcript = self._characters_to_phoneme_representation(
character_transcript
)
logger.info(f"Transcription time: {time.time() - start_time:.2f}s")
return {
"character_transcript": character_transcript,
"phoneme_representation": phoneme_like_transcript,
}
except Exception as e:
print(f"Transformers transcription error: {e}")
return self._empty_result()
def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
"""Calculate confidence scores from logits using numpy"""
# Apply softmax
exp_logits = np.exp(logits - np.max(logits, axis=-1, keepdims=True))
softmax_probs = exp_logits / np.sum(exp_logits, axis=-1, keepdims=True)
# Get max probabilities
max_probs = np.max(softmax_probs, axis=-1)[0]
return max_probs.tolist()
def _clean_character_transcript(self, transcript: str) -> str:
"""Clean and standardize character transcript"""
# Remove extra spaces and special tokens
logger.info(f"Raw transcript before cleaning: {transcript}")
cleaned = re.sub(r"\s+", " ", transcript)
cleaned = cleaned.strip().lower()
return cleaned
def _characters_to_phoneme_representation(self, text: str) -> str:
"""Convert character-based transcript to phoneme-like representation for comparison"""
if not text:
return ""
words = text.split()
phoneme_words = []
g2p = SimpleG2P()
for word in words:
try:
if g2p:
word_data = g2p.text_to_phonemes(word)[0]
phoneme_words.extend(word_data["phonemes"])
else:
phoneme_words.extend(self._simple_letter_to_phoneme(word))
except:
# Fallback: simple letter-to-sound mapping
phoneme_words.extend(self._simple_letter_to_phoneme(word))
return " ".join(phoneme_words)
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
"""Simple fallback letter-to-phoneme conversion"""
letter_to_phoneme = {
"a": "æ",
"b": "b",
"c": "k",
"d": "d",
"e": "ɛ",
"f": "f",
"g": "ɡ",
"h": "h",
"i": "ɪ",
"j": "dʒ",
"k": "k",
"l": "l",
"m": "m",
"n": "n",
"o": "ʌ",
"p": "p",
"q": "k",
"r": "r",
"s": "s",
"t": "t",
"u": "ʌ",
"v": "v",
"w": "w",
"x": "ks",
"y": "j",
"z": "z",
}
phonemes = []
for letter in word.lower():
if letter in letter_to_phoneme:
phonemes.append(letter_to_phoneme[letter])
return phonemes
def _empty_result(self) -> Dict:
"""Return empty result structure"""
return {
"character_transcript": "",
"phoneme_representation": "",
"raw_predicted_ids": [],
"confidence_scores": [],
}
def get_model_info(self) -> Dict:
"""Get information about the loaded model"""
info = {
"model_name": self.model_name,
"sample_rate": self.sample_rate,
"inference_method": "ONNX" if self.use_onnx else "Transformers",
}
if self.use_onnx:
info.update(
{
"onnx_model_path": self.onnx_model_path,
"input_name": self.input_name,
"output_name": self.output_name,
"session_providers": self.session.get_providers(),
}
)
return info
class SimpleG2P:
"""Simple Grapheme-to-Phoneme converter for reference text"""
def __init__(self):
try:
self.cmu_dict = cmudict.dict()
except:
self.cmu_dict = {}
print("Warning: CMU dictionary not available")
def text_to_phonemes(self, text: str) -> List[Dict]:
"""Convert text to phoneme sequence"""
words = self._clean_text(text).split()
phoneme_sequence = []
for word in words:
word_phonemes = self._get_word_phonemes(word)
phoneme_sequence.append(
{
"word": word,
"phonemes": word_phonemes,
"ipa": self._get_ipa(word),
"phoneme_string": " ".join(word_phonemes),
}
)
return phoneme_sequence
def get_reference_phoneme_string(self, text: str) -> str:
"""Get reference phoneme string for comparison"""
phoneme_sequence = self.text_to_phonemes(text)
all_phonemes = []
for word_data in phoneme_sequence:
all_phonemes.extend(word_data["phonemes"])
return " ".join(all_phonemes)
def _clean_text(self, text: str) -> str:
"""Clean text for processing"""
text = re.sub(r"[^\w\s\']", " ", text)
text = re.sub(r"\s+", " ", text)
return text.lower().strip()
def _get_word_phonemes(self, word: str) -> List[str]:
"""Get phonemes for a word"""
word_lower = word.lower()
if word_lower in self.cmu_dict:
# Remove stress markers and convert to Wav2Vec2 phoneme format
phonemes = self.cmu_dict[word_lower][0]
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
return self._convert_to_wav2vec_format(clean_phonemes)
else:
return self._estimate_phonemes(word)
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
"""Convert CMU phonemes to Wav2Vec2 format"""
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
cmu_to_espeak = {
"AA": "ɑ",
"AE": "æ",
"AH": "ʌ",
"AO": "ɔ",
"AW": "aʊ",
"AY": "aɪ",
"EH": "ɛ",
"ER": "ɝ",
"EY": "eɪ",
"IH": "ɪ",
"IY": "i",
"OW": "oʊ",
"OY": "ɔɪ",
"UH": "ʊ",
"UW": "u",
"B": "b",
"CH": "tʃ",
"D": "d",
"DH": "ð",
"F": "f",
"G": "ɡ",
"HH": "h",
"JH": "dʒ",
"K": "k",
"L": "l",
"M": "m",
"N": "n",
"NG": "ŋ",
"P": "p",
"R": "r",
"S": "s",
"SH": "ʃ",
"T": "t",
"TH": "θ",
"V": "v",
"W": "w",
"Y": "j",
"Z": "z",
"ZH": "ʒ",
}
converted = []
for phoneme in cmu_phonemes:
converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
converted.append(converted_phoneme)
return converted
def _get_ipa(self, word: str) -> str:
"""Get IPA transcription"""
try:
return ipa.convert(word)
except:
return f"/{word}/"
def _estimate_phonemes(self, word: str) -> List[str]:
"""Estimate phonemes for unknown words"""
# Basic phoneme estimation with eSpeak-style output
phoneme_map = {
"ch": ["tʃ"],
"sh": ["ʃ"],
"th": ["θ"],
"ph": ["f"],
"ck": ["k"],
"ng": ["ŋ"],
"qu": ["k", "w"],
"a": ["æ"],
"e": ["ɛ"],
"i": ["ɪ"],
"o": ["ʌ"],
"u": ["ʌ"],
"b": ["b"],
"c": ["k"],
"d": ["d"],
"f": ["f"],
"g": ["ɡ"],
"h": ["h"],
"j": ["dʒ"],
"k": ["k"],
"l": ["l"],
"m": ["m"],
"n": ["n"],
"p": ["p"],
"r": ["r"],
"s": ["s"],
"t": ["t"],
"v": ["v"],
"w": ["w"],
"x": ["k", "s"],
"y": ["j"],
"z": ["z"],
}
word = word.lower()
phonemes = []
i = 0
while i < len(word):
# Check 2-letter combinations first
if i <= len(word) - 2:
two_char = word[i : i + 2]
if two_char in phoneme_map:
phonemes.extend(phoneme_map[two_char])
i += 2
continue
# Single character
char = word[i]
if char in phoneme_map:
phonemes.extend(phoneme_map[char])
i += 1
return phonemes
class PhonemeComparator:
"""Compare reference and learner phoneme sequences"""
def __init__(self):
# Vietnamese speakers' common phoneme substitutions
self.substitution_patterns = {
"θ": ["f", "s", "t"], # TH → F, S, T
"ð": ["d", "z", "v"], # DH → D, Z, V
"v": ["w", "f"], # V → W, F
"r": ["l"], # R → L
"l": ["r"], # L → R
"z": ["s"], # Z → S
"ʒ": ["ʃ", "z"], # ZH → SH, Z
"ŋ": ["n"], # NG → N
}
# Difficulty levels for Vietnamese speakers
self.difficulty_map = {
"θ": 0.9, # th (think)
"ð": 0.9, # th (this)
"v": 0.8, # v
"z": 0.8, # z
"ʒ": 0.9, # zh (measure)
"r": 0.7, # r
"l": 0.6, # l
"w": 0.5, # w
"f": 0.4, # f
"s": 0.3, # s
"ʃ": 0.5, # sh
"tʃ": 0.4, # ch
"dʒ": 0.5, # j
"ŋ": 0.3, # ng
}
def compare_phoneme_sequences(
self, reference_phonemes: str, learner_phonemes: str
) -> List[Dict]:
"""Compare reference and learner phoneme sequences"""
# Split phoneme strings
ref_phones = reference_phonemes.split()
learner_phones = learner_phonemes.split()
print(f"Reference phonemes: {ref_phones}")
print(f"Learner phonemes: {learner_phones}")
# Simple alignment comparison
comparisons = []
max_len = max(len(ref_phones), len(learner_phones))
for i in range(max_len):
ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""
if ref_phoneme and learner_phoneme:
# Both present - check accuracy
if ref_phoneme == learner_phoneme:
status = "correct"
score = 1.0
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
status = "acceptable"
score = 0.7
else:
status = "wrong"
score = 0.2
elif ref_phoneme and not learner_phoneme:
# Missing phoneme
status = "missing"
score = 0.0
elif learner_phoneme and not ref_phoneme:
# Extra phoneme
status = "extra"
score = 0.0
else:
continue
comparison = {
"position": i,
"reference_phoneme": ref_phoneme,
"learner_phoneme": learner_phoneme,
"status": status,
"score": score,
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
}
comparisons.append(comparison)
return comparisons
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
"""Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
acceptable = self.substitution_patterns.get(reference, [])
return learner in acceptable
# =============================================================================
# WORD ANALYZER
# =============================================================================
class WordAnalyzer:
"""Analyze word-level pronunciation accuracy using character-based ASR"""
def __init__(self):
self.g2p = SimpleG2P()
self.comparator = PhonemeComparator()
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
# Get reference phonemes by word
reference_words = self.g2p.text_to_phonemes(reference_text)
# Get overall phoneme comparison
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
phoneme_comparisons = self.comparator.compare_phoneme_sequences(
reference_phoneme_string, learner_phonemes
)
# Map phonemes back to words
word_highlights = self._create_word_highlights(
reference_words, phoneme_comparisons
)
# Identify wrong words
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
return {
"word_highlights": word_highlights,
"phoneme_differences": phoneme_comparisons,
"wrong_words": wrong_words,
}
def _create_word_highlights(
self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
) -> List[Dict]:
"""Create word highlighting data"""
word_highlights = []
phoneme_index = 0
for word_data in reference_words:
word = word_data["word"]
word_phonemes = word_data["phonemes"]
num_phonemes = len(word_phonemes)
# Get phoneme scores for this word
word_phoneme_scores = []
for j in range(num_phonemes):
if phoneme_index + j < len(phoneme_comparisons):
comparison = phoneme_comparisons[phoneme_index + j]
word_phoneme_scores.append(comparison["score"])
# Calculate word score
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
# Create word highlight
highlight = {
"word": word,
"score": float(word_score),
"status": self._get_word_status(word_score),
"color": self._get_word_color(word_score),
"phonemes": word_phonemes,
"ipa": word_data["ipa"],
"phoneme_scores": word_phoneme_scores,
"phoneme_start_index": phoneme_index,
"phoneme_end_index": phoneme_index + num_phonemes - 1,
}
word_highlights.append(highlight)
phoneme_index += num_phonemes
return word_highlights
def _identify_wrong_words(
self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
) -> List[Dict]:
"""Identify words that were pronounced incorrectly"""
wrong_words = []
for word_highlight in word_highlights:
if word_highlight["score"] < 0.6: # Threshold for wrong pronunciation
# Find specific phoneme errors for this word
start_idx = word_highlight["phoneme_start_index"]
end_idx = word_highlight["phoneme_end_index"]
wrong_phonemes = []
missing_phonemes = []
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
comparison = phoneme_comparisons[i]
if comparison["status"] == "wrong":
wrong_phonemes.append(
{
"expected": comparison["reference_phoneme"],
"actual": comparison["learner_phoneme"],
"difficulty": comparison["difficulty"],
}
)
elif comparison["status"] == "missing":
missing_phonemes.append(
{
"phoneme": comparison["reference_phoneme"],
"difficulty": comparison["difficulty"],
}
)
wrong_word = {
"word": word_highlight["word"],
"score": word_highlight["score"],
"expected_phonemes": word_highlight["phonemes"],
"ipa": word_highlight["ipa"],
"wrong_phonemes": wrong_phonemes,
"missing_phonemes": missing_phonemes,
"tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
}
wrong_words.append(wrong_word)
return wrong_words
def _get_word_status(self, score: float) -> str:
"""Get word status from score"""
if score >= 0.8:
return "excellent"
elif score >= 0.6:
return "good"
elif score >= 0.4:
return "needs_practice"
else:
return "poor"
def _get_word_color(self, score: float) -> str:
"""Get color for word highlighting"""
if score >= 0.8:
return "#22c55e" # Green
elif score >= 0.6:
return "#84cc16" # Light green
elif score >= 0.4:
return "#eab308" # Yellow
else:
return "#ef4444" # Red
def _get_vietnamese_tips(
self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
) -> List[str]:
"""Get Vietnamese-specific pronunciation tips"""
tips = []
# Tips for specific Vietnamese pronunciation challenges
vietnamese_tips = {
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
"v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
"r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
"l": "Đầu lưỡi chạm vào vòm miệng sau răng",
"z": "Giống âm 's' nhưng có rung dây thanh âm",
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
}
# Add tips for wrong phonemes
for wrong in wrong_phonemes:
expected = wrong["expected"]
actual = wrong["actual"]
if expected in vietnamese_tips:
tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
else:
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
# Add tips for missing phonemes
for missing in missing_phonemes:
phoneme = missing["phoneme"]
if phoneme in vietnamese_tips:
tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")
return tips
class SimpleFeedbackGenerator:
"""Generate simple, actionable feedback in Vietnamese"""
def generate_feedback(
self,
overall_score: float,
wrong_words: List[Dict],
phoneme_comparisons: List[Dict],
) -> List[str]:
"""Generate Vietnamese feedback"""
feedback = []
# Overall feedback in Vietnamese
if overall_score >= 0.8:
feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
elif overall_score >= 0.6:
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
elif overall_score >= 0.4:
feedback.append(
"Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
)
else:
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
# Wrong words feedback
if wrong_words:
if len(wrong_words) <= 3:
word_names = [w["word"] for w in wrong_words]
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
else:
feedback.append(
f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
)
# Most problematic phonemes
problem_phonemes = defaultdict(int)
for comparison in phoneme_comparisons:
if comparison["status"] in ["wrong", "missing"]:
phoneme = comparison["reference_phoneme"]
problem_phonemes[phoneme] += 1
if problem_phonemes:
most_difficult = sorted(
problem_phonemes.items(), key=lambda x: x[1], reverse=True
)
top_problem = most_difficult[0][0]
phoneme_tips = {
"θ": "Lưỡi giữa răng, thổi nhẹ",
"ð": "Lưỡi giữa răng, rung dây thanh",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng",
"z": "Như 's' nhưng rung dây thanh",
}
if top_problem in phoneme_tips:
feedback.append(
f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
)
return feedback
class SimplePronunciationAssessor:
"""Main pronunciation assessor supporting both normal (Whisper) and advanced (Wav2Vec2) modes"""
def __init__(self):
print("Initializing Simple Pronunciation Assessor...")
self.wav2vec2_asr = Wav2Vec2CharacterASR() # Advanced mode
self.word_analyzer = WordAnalyzer()
self.feedback_generator = SimpleFeedbackGenerator()
print("Initialization completed")
def assess_pronunciation(
self, audio_path: str, reference_text: str, mode: str = "normal"
) -> Dict:
"""
Main assessment function with mode selection
Args:
audio_path: Path to audio file
reference_text: Reference text to compare
mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)
Output: Word highlights + Phoneme differences + Wrong words
"""
print(f"Starting pronunciation assessment in {mode} mode...")
# Step 1: Choose ASR model based on mode
if mode == "advanced":
print("Step 1: Using Wav2Vec2 character transcription...")
asr_result = self.wav2vec2_asr.transcribe_to_characters(audio_path)
model_info = f"Wav2Vec2-Character ({self.wav2vec2_asr.model})"
character_transcript = asr_result["character_transcript"]
phoneme_representation = asr_result["phoneme_representation"]
print(f"Character transcript: {character_transcript}")
print(f"Phoneme representation: {phoneme_representation}")
# Step 2: Word analysis using phoneme representation
print("Step 2: Analyzing words...")
analysis_result = self.word_analyzer.analyze_words(
reference_text, phoneme_representation
)
# Step 3: Calculate overall score
phoneme_comparisons = analysis_result["phoneme_differences"]
overall_score = self._calculate_overall_score(phoneme_comparisons)
# Step 4: Generate feedback
print("Step 3: Generating feedback...")
feedback = self.feedback_generator.generate_feedback(
overall_score, analysis_result["wrong_words"], phoneme_comparisons
)
result = {
"transcript": character_transcript, # What user actually said
"transcript_phonemes": phoneme_representation,
"user_phonemes": phoneme_representation, # Alias for UI clarity
"character_transcript": character_transcript,
"overall_score": overall_score,
"word_highlights": analysis_result["word_highlights"],
"phoneme_differences": phoneme_comparisons,
"wrong_words": analysis_result["wrong_words"],
"feedback": feedback,
"processing_info": {
"model_used": model_info,
"mode": mode,
"character_based": mode == "advanced",
"language_model_correction": mode == "normal",
"raw_output": mode == "advanced",
},
}
print("Assessment completed successfully")
return result
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
"""Calculate overall pronunciation score"""
if not phoneme_comparisons:
return 0.0
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
return total_score / len(phoneme_comparisons)
|