File size: 18,678 Bytes
cef1d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from typing import List, Dict
import numpy as np
import nltk
import eng_to_ipa as ipa
import re
from collections import defaultdict


try:
    nltk.download("cmudict", quiet=True)
    from nltk.corpus import cmudict
except:
    print("Warning: NLTK data not available")


class SimpleG2P:
    """Simple Grapheme-to-Phoneme converter for reference text"""

    def __init__(self):
        try:
            self.cmu_dict = cmudict.dict()
        except:
            self.cmu_dict = {}
            print("Warning: CMU dictionary not available")

    def text_to_phonemes(self, text: str) -> List[Dict]:
        """Convert text to phoneme sequence"""
        words = self._clean_text(text).split()
        phoneme_sequence = []

        for word in words:
            word_phonemes = self._get_word_phonemes(word)
            phoneme_sequence.append(
                {
                    "word": word,
                    "phonemes": word_phonemes,
                    "ipa": self._get_ipa(word),
                    "phoneme_string": " ".join(word_phonemes),
                }
            )

        return phoneme_sequence

    def get_reference_phoneme_string(self, text: str) -> str:
        """Get reference phoneme string for comparison"""
        phoneme_sequence = self.text_to_phonemes(text)
        all_phonemes = []

        for word_data in phoneme_sequence:
            all_phonemes.extend(word_data["phonemes"])

        return " ".join(all_phonemes)

    def _clean_text(self, text: str) -> str:
        """Clean text for processing"""
        text = re.sub(r"[^\w\s\']", " ", text)
        text = re.sub(r"\s+", " ", text)
        return text.lower().strip()

    def _get_word_phonemes(self, word: str) -> List[str]:
        """Get phonemes for a word"""
        word_lower = word.lower()

        if word_lower in self.cmu_dict:
            # Remove stress markers and convert to Wav2Vec2 phoneme format
            phonemes = self.cmu_dict[word_lower][0]
            clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
            return self._convert_to_wav2vec_format(clean_phonemes)
        else:
            return self._estimate_phonemes(word)

    def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
        """Convert CMU phonemes to Wav2Vec2 format"""
        # Mapping from CMU to Wav2Vec2/eSpeak phonemes
        cmu_to_espeak = {
            "AA": "ɑ",
            "AE": "æ",
            "AH": "ʌ",
            "AO": "ɔ",
            "AW": "aʊ",
            "AY": "aɪ",
            "EH": "ɛ",
            "ER": "ɝ",
            "EY": "eɪ",
            "IH": "ɪ",
            "IY": "i",
            "OW": "oʊ",
            "OY": "ɔɪ",
            "UH": "ʊ",
            "UW": "u",
            "B": "b",
            "CH": "tʃ",
            "D": "d",
            "DH": "ð",
            "F": "f",
            "G": "ɡ",
            "HH": "h",
            "JH": "dʒ",
            "K": "k",
            "L": "l",
            "M": "m",
            "N": "n",
            "NG": "ŋ",
            "P": "p",
            "R": "r",
            "S": "s",
            "SH": "ʃ",
            "T": "t",
            "TH": "θ",
            "V": "v",
            "W": "w",
            "Y": "j",
            "Z": "z",
            "ZH": "ʒ",
        }

        converted = []
        for phoneme in cmu_phonemes:
            converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
            converted.append(converted_phoneme)

        return converted

    def _get_ipa(self, word: str) -> str:
        """Get IPA transcription"""
        try:
            return ipa.convert(word)
        except:
            return f"/{word}/"

    def _estimate_phonemes(self, word: str) -> List[str]:
        """Estimate phonemes for unknown words"""
        # Basic phoneme estimation with eSpeak-style output
        phoneme_map = {
            "ch": ["tʃ"],
            "sh": ["ʃ"],
            "th": ["θ"],
            "ph": ["f"],
            "ck": ["k"],
            "ng": ["ŋ"],
            "qu": ["k", "w"],
            "a": ["æ"],
            "e": ["ɛ"],
            "i": ["ɪ"],
            "o": ["ʌ"],
            "u": ["ʌ"],
            "b": ["b"],
            "c": ["k"],
            "d": ["d"],
            "f": ["f"],
            "g": ["ɡ"],
            "h": ["h"],
            "j": ["dʒ"],
            "k": ["k"],
            "l": ["l"],
            "m": ["m"],
            "n": ["n"],
            "p": ["p"],
            "r": ["r"],
            "s": ["s"],
            "t": ["t"],
            "v": ["v"],
            "w": ["w"],
            "x": ["k", "s"],
            "y": ["j"],
            "z": ["z"],
        }

        word = word.lower()
        phonemes = []
        i = 0

        while i < len(word):
            # Check 2-letter combinations first
            if i <= len(word) - 2:
                two_char = word[i : i + 2]
                if two_char in phoneme_map:
                    phonemes.extend(phoneme_map[two_char])
                    i += 2
                    continue

            # Single character
            char = word[i]
            if char in phoneme_map:
                phonemes.extend(phoneme_map[char])

            i += 1

        return phonemes


class PhonemeComparator:
    """Compare reference and learner phoneme sequences"""

    def __init__(self):
        # Vietnamese speakers' common phoneme substitutions
        self.substitution_patterns = {
            "θ": ["f", "s", "t"],  # TH → F, S, T
            "ð": ["d", "z", "v"],  # DH → D, Z, V
            "v": ["w", "f"],  # V → W, F
            "r": ["l"],  # R → L
            "l": ["r"],  # L → R
            "z": ["s"],  # Z → S
            "ʒ": ["ʃ", "z"],  # ZH → SH, Z
            "ŋ": ["n"],  # NG → N
        }

        # Difficulty levels for Vietnamese speakers
        self.difficulty_map = {
            "θ": 0.9,  # th (think)
            "ð": 0.9,  # th (this)
            "v": 0.8,  # v
            "z": 0.8,  # z
            "ʒ": 0.9,  # zh (measure)
            "r": 0.7,  # r
            "l": 0.6,  # l
            "w": 0.5,  # w
            "f": 0.4,  # f
            "s": 0.3,  # s
            "ʃ": 0.5,  # sh
            "tʃ": 0.4,  # ch
            "dʒ": 0.5,  # j
            "ŋ": 0.3,  # ng
        }

    def compare_phoneme_sequences(
        self, reference_phonemes: str, learner_phonemes: str
    ) -> List[Dict]:
        """Compare reference and learner phoneme sequences"""

        # Split phoneme strings
        ref_phones = reference_phonemes.split()
        learner_phones = learner_phonemes.split()

        print(f"Reference phonemes: {ref_phones}")
        print(f"Learner phonemes: {learner_phones}")

        # Simple alignment comparison
        comparisons = []
        max_len = max(len(ref_phones), len(learner_phones))

        for i in range(max_len):
            ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
            learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""

            if ref_phoneme and learner_phoneme:
                # Both present - check accuracy
                if ref_phoneme == learner_phoneme:
                    status = "correct"
                    score = 1.0
                elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
                    status = "acceptable"
                    score = 0.7
                else:
                    status = "wrong"
                    score = 0.2

            elif ref_phoneme and not learner_phoneme:
                # Missing phoneme
                status = "missing"
                score = 0.0

            elif learner_phoneme and not ref_phoneme:
                # Extra phoneme
                status = "extra"
                score = 0.0
            else:
                continue

            comparison = {
                "position": i,
                "reference_phoneme": ref_phoneme,
                "learner_phoneme": learner_phoneme,
                "status": status,
                "score": score,
                "difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
            }

            comparisons.append(comparison)

        return comparisons

    def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
        """Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
        acceptable = self.substitution_patterns.get(reference, [])
        return learner in acceptable


# =============================================================================
# WORD ANALYZER
# =============================================================================


class WordAnalyzer:
    """Analyze word-level pronunciation accuracy using character-based ASR"""

    def __init__(self):
        self.g2p = SimpleG2P()
        self.comparator = PhonemeComparator()

    def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
        """Analyze word-level pronunciation using phoneme representation from character ASR"""

        # Get reference phonemes by word
        reference_words = self.g2p.text_to_phonemes(reference_text)

        # Get overall phoneme comparison
        reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
        phoneme_comparisons = self.comparator.compare_phoneme_sequences(
            reference_phoneme_string, learner_phonemes
        )

        # Map phonemes back to words
        word_highlights = self._create_word_highlights(
            reference_words, phoneme_comparisons
        )

        # Identify wrong words
        wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)

        return {
            "word_highlights": word_highlights,
            "phoneme_differences": phoneme_comparisons,
            "wrong_words": wrong_words,
        }

    def _create_word_highlights(
        self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
    ) -> List[Dict]:
        """Create word highlighting data"""

        word_highlights = []
        phoneme_index = 0

        for word_data in reference_words:
            word = word_data["word"]
            word_phonemes = word_data["phonemes"]
            num_phonemes = len(word_phonemes)

            # Get phoneme scores for this word
            word_phoneme_scores = []
            for j in range(num_phonemes):
                if phoneme_index + j < len(phoneme_comparisons):
                    comparison = phoneme_comparisons[phoneme_index + j]
                    word_phoneme_scores.append(comparison["score"])

            # Calculate word score
            word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0

            # Create word highlight
            highlight = {
                "word": word,
                "score": float(word_score),
                "status": self._get_word_status(word_score),
                "color": self._get_word_color(word_score),
                "phonemes": word_phonemes,
                "ipa": word_data["ipa"],
                "phoneme_scores": word_phoneme_scores,
                "phoneme_start_index": phoneme_index,
                "phoneme_end_index": phoneme_index + num_phonemes - 1,
            }

            word_highlights.append(highlight)
            phoneme_index += num_phonemes

        return word_highlights

    def _identify_wrong_words(
        self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
    ) -> List[Dict]:
        """Identify words that were pronounced incorrectly"""

        wrong_words = []

        for word_highlight in word_highlights:
            if word_highlight["score"] < 0.6:  # Threshold for wrong pronunciation

                # Find specific phoneme errors for this word
                start_idx = word_highlight["phoneme_start_index"]
                end_idx = word_highlight["phoneme_end_index"]

                wrong_phonemes = []
                missing_phonemes = []

                for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
                    comparison = phoneme_comparisons[i]

                    if comparison["status"] == "wrong":
                        wrong_phonemes.append(
                            {
                                "expected": comparison["reference_phoneme"],
                                "actual": comparison["learner_phoneme"],
                                "difficulty": comparison["difficulty"],
                            }
                        )
                    elif comparison["status"] == "missing":
                        missing_phonemes.append(
                            {
                                "phoneme": comparison["reference_phoneme"],
                                "difficulty": comparison["difficulty"],
                            }
                        )

                wrong_word = {
                    "word": word_highlight["word"],
                    "score": word_highlight["score"],
                    "expected_phonemes": word_highlight["phonemes"],
                    "ipa": word_highlight["ipa"],
                    "wrong_phonemes": wrong_phonemes,
                    "missing_phonemes": missing_phonemes,
                    "tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
                }

                wrong_words.append(wrong_word)

        return wrong_words

    def _get_word_status(self, score: float) -> str:
        """Get word status from score"""
        if score >= 0.8:
            return "excellent"
        elif score >= 0.6:
            return "good"
        elif score >= 0.4:
            return "needs_practice"
        else:
            return "poor"

    def _get_word_color(self, score: float) -> str:
        """Get color for word highlighting"""
        if score >= 0.8:
            return "#22c55e"  # Green
        elif score >= 0.6:
            return "#84cc16"  # Light green
        elif score >= 0.4:
            return "#eab308"  # Yellow
        else:
            return "#ef4444"  # Red

    def _get_vietnamese_tips(
        self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
    ) -> List[str]:
        """Get Vietnamese-specific pronunciation tips"""

        tips = []

        # Tips for specific Vietnamese pronunciation challenges
        vietnamese_tips = {
            "θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
            "ð": "Giống θ nhưng rung dây thanh âm (this, that)",
            "v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
            "r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
            "l": "Đầu lưỡi chạm vào vòm miệng sau răng",
            "z": "Giống âm 's' nhưng có rung dây thanh âm",
            "ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
            "w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
        }

        # Add tips for wrong phonemes
        for wrong in wrong_phonemes:
            expected = wrong["expected"]
            actual = wrong["actual"]

            if expected in vietnamese_tips:
                tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
            else:
                tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")

        # Add tips for missing phonemes
        for missing in missing_phonemes:
            phoneme = missing["phoneme"]
            if phoneme in vietnamese_tips:
                tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")

        return tips


class SimpleFeedbackGenerator:
    """Generate simple, actionable feedback in Vietnamese"""

    def generate_feedback(
        self,
        overall_score: float,
        wrong_words: List[Dict],
        phoneme_comparisons: List[Dict],
    ) -> List[str]:
        """Generate Vietnamese feedback"""

        feedback = []

        # Overall feedback in Vietnamese
        if overall_score >= 0.8:
            feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
        elif overall_score >= 0.6:
            feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
        elif overall_score >= 0.4:
            feedback.append(
                "Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
            )
        else:
            feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")

        # Wrong words feedback
        if wrong_words:
            if len(wrong_words) <= 3:
                word_names = [w["word"] for w in wrong_words]
                feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
            else:
                feedback.append(
                    f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
                )

        # Most problematic phonemes
        problem_phonemes = defaultdict(int)
        for comparison in phoneme_comparisons:
            if comparison["status"] in ["wrong", "missing"]:
                phoneme = comparison["reference_phoneme"]
                problem_phonemes[phoneme] += 1

        if problem_phonemes:
            most_difficult = sorted(
                problem_phonemes.items(), key=lambda x: x[1], reverse=True
            )
            top_problem = most_difficult[0][0]

            phoneme_tips = {
                "θ": "Lưỡi giữa răng, thổi nhẹ",
                "ð": "Lưỡi giữa răng, rung dây thanh",
                "v": "Môi dưới chạm răng trên",
                "r": "Cuộn lưỡi, không chạm vòm miệng",
                "l": "Lưỡi chạm vòm miệng",
                "z": "Như 's' nhưng rung dây thanh",
            }

            if top_problem in phoneme_tips:
                feedback.append(
                    f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
                )

        return feedback


def convert_numpy_types(obj):
    """Convert numpy types to Python native types"""
    if isinstance(obj, np.integer):
        return int(obj)
    elif isinstance(obj, np.floating):
        return float(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, dict):
        return {key: convert_numpy_types(value) for key, value in obj.items()}
    elif isinstance(obj, list):
        return [convert_numpy_types(item) for item in obj]
    else:
        return obj