Spaces:
Runtime error
Runtime error
File size: 13,100 Bytes
aaaa963 d826258 61c7b22 aaaa963 d826258 61c7b22 d826258 61c7b22 d826258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import streamlit as st
import time
from transformers import pipeline
from datasets import load_dataset, Audio, Features
st.set_page_config(page_title="🤗 Transformers Library examples",layout="wide")
st.title('🤗 :rainbow[Transformers Library examples]')
# Done
# function for Sentiment Analysis or Text classification model
def sentiment_analysis():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
st.write("Output:")
st.success(results)
st.divider()
st.subheader("Example: Multiple statements analysis")
with st.spinner('Wait for it...'):
time.sleep(5)
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier([
"This is quick tutorial site.",
"I learnt new topics today.",
"I do not like lengthy tutorials."
])
'''
st.code(code, language='python')
results = classifier([
"This is quick tutorial site.",
"I learnt new topics today.",
"I do not like lengthy tutorials."
])
st.write("Output:")
st.success(results)
# function for Sentiment Analysis or Text classification model
def text_generation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Sentiment Analysis or Text classification model
def summarization():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# DONE
# function for Image Classification model
def image_classification():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
st.image("./data/dog.jpeg", width=250, use_column_width=100)
with st.spinner('Wait for it...'):
time.sleep(8)
vision_classifier = pipeline(model="google/vit-base-patch16-224")
preds = vision_classifier(images="./data/dog.jpeg")
st.success("Output:")
st.json(preds)
# function for Sentiment Analysis or Text classification model
def image_segmentation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Sentiment Analysis or Text classification model
def object_detection():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Audio Classification model
def audio_classification():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function forAutomatic Speech Recognition model
def automatic_speech_recognition():
code = '''
from transformers import pipeline
classifier = pipeline("automatic-speech-recognition")
results = transcriber("./data/mlk.flac")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
result = speech_recognizer(dataset[:4]["audio"])
with st.spinner('Wait for it...'):
time.sleep(5)
st.write("Output:")
st.success([d["text"] for d in result])
# function for Image Captioningn model
def image_captioning():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Mask Filling model
def mask_filling():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for Document Question Answering model
def document_question_answering():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
with st.spinner('Wait for it...'):
time.sleep(5)
# function for Named Entity Recognition model
def named_entity_recognition():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
# function for translation model
def translation():
code = '''
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
results = classifier("Transformers library is very helpful.")
'''
st.code(code, language='python')
if st.button("Run Test ", type="primary"):
with st.spinner('Wait for it...'):
time.sleep(5)
classifier = pipeline("sentiment-analysis")
col1, col2 = st.columns(2)
'''
- `"audio-classification"`: will return a [`AudioClassificationPipeline`].
- `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
- `"conversational"`: will return a [`ConversationalPipeline`].
- `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
- `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
- `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
- `"fill-mask"`: will return a [`FillMaskPipeline`]:.
- `"image-classification"`: will return a [`ImageClassificationPipeline`].
- `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
- `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
- `"image-to-image"`: will return a [`ImageToImagePipeline`].
- `"image-to-text"`: will return a [`ImageToTextPipeline`].
- `"mask-generation"`: will return a [`MaskGenerationPipeline`].
- `"object-detection"`: will return a [`ObjectDetectionPipeline`].
- `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
- `"summarization"`: will return a [`SummarizationPipeline`].
- `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
- `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a
[`TextClassificationPipeline`].
- `"text-generation"`: will return a [`TextGenerationPipeline`]:.
- `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
- `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
- `"translation"`: will return a [`TranslationPipeline`].
- `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
- `"video-classification"`: will return a [`VideoClassificationPipeline`].
- `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
- `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
- `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
- `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
- `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].
'''
with col1:
taskType = st.radio(
"Select a type of task to perform",
[
"Sentiment Analysis or Text classification",
"Text Generation",
"Summarization",
"Image Classification",
"Image Segmentation",
"Object Detection",
"Audio Classification",
"Automatic Speech Recognition",
"Visual Question Answering",
"Document Question Answering",
"Image Captioning",
"Mask Filling",
"Named Entity Recognition",
"Translation"
],
captions = [
"**pipeline(task=“sentiment-analysis”)**",
"pipeline(task=“text-generation”)",
"pipeline(task=“summarization”)",
"pipeline(task=“image-classification”)",
"pipeline(task=“image-segmentation”)",
"pipeline(task=“object-detection”)",
"pipeline(task=“audio-classification”)",
"pipeline(task=“automatic-speech-recognition”)",
"pipeline(task=“vqa”)",
"pipeline(task=“document-question-answering”)",
"pipeline(task=“image-to-text”)"
"Mask Filling",
"Named Entity Recognition",
"Translation"
], index=0)
with col2:
st.subheader(f"Example: {taskType}")
if taskType == "Sentiment Analysis or Text classification":
sentiment_analysis()
if taskType == "Text Generation":
text_generation()
if taskType == "Summarization":
summarization()
if taskType == "Image Classification":
image_classification()
if taskType == "Image Segmentation":
image_segmentation()
if taskType == "Object Detection":
object_detection()
if taskType == "Audio Classification":
audio_classification()
if taskType == "Automatic Speech Recognition":
automatic_speech_recognition()
if taskType == "Document Question Answering":
document_question_answering()
if taskType == "Image Captioning":
image_captioning()
if taskType == "Mask Filling":
mask_filling()
if taskType == "Named Entity Recognition":
named_entity_recognition()
if taskType == "Translation":
translation()
|