File size: 13,100 Bytes
aaaa963
d826258
 
61c7b22
aaaa963
d826258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c7b22
 
 
 
d826258
 
 
61c7b22
d826258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import streamlit as st
import time
from transformers import pipeline
from datasets import load_dataset, Audio, Features

st.set_page_config(page_title="🤗 Transformers Library examples",layout="wide")

st.title('🤗 :rainbow[Transformers Library examples]')

# Done
# function for Sentiment Analysis or Text classification model
def sentiment_analysis():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)
        classifier = pipeline("sentiment-analysis")
        results = classifier("Transformers library is very helpful.")

        
        st.write("Output:")
        st.success(results)
        st.divider()

        st.subheader("Example: Multiple statements analysis")
        with st.spinner('Wait for it...'):
            time.sleep(5)

        code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier([
                "This is quick tutorial site.",
                "I learnt new topics today.",
                "I do not like lengthy tutorials."
            ])
        '''
        st.code(code, language='python')

        results = classifier([
            "This is quick tutorial site.",
            "I learnt new topics today.",
            "I do not like lengthy tutorials."
        ])

        st.write("Output:")
        st.success(results)


# function for Sentiment Analysis or Text classification model
def text_generation():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")



# function for Sentiment Analysis or Text classification model
def summarization():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")
     
# DONE
# function for Image Classification model
def image_classification():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        st.image("./data/dog.jpeg", width=250, use_column_width=100)
        with st.spinner('Wait for it...'):
            time.sleep(8)
        vision_classifier = pipeline(model="google/vit-base-patch16-224")
        preds = vision_classifier(images="./data/dog.jpeg")
        st.success("Output:")
        st.json(preds)


# function for Sentiment Analysis or Text classification model
def image_segmentation():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")


# function for Sentiment Analysis or Text classification model
def object_detection():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")


# function for Audio Classification model
def audio_classification():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")


# function forAutomatic Speech Recognition model
def automatic_speech_recognition():
    code = '''
            from transformers import pipeline

            classifier = pipeline("automatic-speech-recognition")
            results = transcriber("./data/mlk.flac")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
        dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
        dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
        result = speech_recognizer(dataset[:4]["audio"])
        with st.spinner('Wait for it...'):
            time.sleep(5)
        st.write("Output:")
        st.success([d["text"] for d in result])


# function for Image Captioningn model
def image_captioning():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")


# function for Mask Filling model
def mask_filling():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")        




# function for Document Question Answering model
def document_question_answering():
        code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
        st.code(code, language='python')
        with st.spinner('Wait for it...'):
            time.sleep(5)

        



# function for Named Entity Recognition model
def named_entity_recognition():
    code = '''
            from transformers import pipeline

            classifier = pipeline("sentiment-analysis")
            results = classifier("Transformers library is very helpful.")
        '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):
        with st.spinner('Wait for it...'):
            time.sleep(5)

        classifier = pipeline("sentiment-analysis")  


# function for translation model
def translation():
    code = '''
        from transformers import pipeline

        classifier = pipeline("sentiment-analysis")
        results = classifier("Transformers library is very helpful.")
    '''
    st.code(code, language='python')
    if st.button("Run Test ", type="primary"):      
        with st.spinner('Wait for it...'):
            time.sleep(5)
        classifier = pipeline("sentiment-analysis")




col1, col2 = st.columns(2)
'''
   - `"audio-classification"`: will return a [`AudioClassificationPipeline`].
            - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`].
            - `"conversational"`: will return a [`ConversationalPipeline`].
            - `"depth-estimation"`: will return a [`DepthEstimationPipeline`].
            - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`].
            - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`].
            - `"fill-mask"`: will return a [`FillMaskPipeline`]:.
            - `"image-classification"`: will return a [`ImageClassificationPipeline`].
            - `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`].
            - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`].
            - `"image-to-image"`: will return a [`ImageToImagePipeline`].
            - `"image-to-text"`: will return a [`ImageToTextPipeline`].
            - `"mask-generation"`: will return a [`MaskGenerationPipeline`].
            - `"object-detection"`: will return a [`ObjectDetectionPipeline`].
            - `"question-answering"`: will return a [`QuestionAnsweringPipeline`].
            - `"summarization"`: will return a [`SummarizationPipeline`].
            - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`].
            - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`].
            - `"text-classification"` (alias `"sentiment-analysis"` available): will return a
              [`TextClassificationPipeline`].
            - `"text-generation"`: will return a [`TextGenerationPipeline`]:.
            - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:.
            - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`].
            - `"translation"`: will return a [`TranslationPipeline`].
            - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`].
            - `"video-classification"`: will return a [`VideoClassificationPipeline`].
            - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`].
            - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`].
            - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`].
            - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`].
            - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`].

'''


with col1:
    taskType = st.radio(
        "Select a type of task to perform",
        [
            "Sentiment Analysis or Text classification", 
            "Text Generation",
            "Summarization",
            "Image Classification",
            "Image Segmentation",
            "Object Detection",
            "Audio Classification",
            "Automatic Speech Recognition",
            "Visual Question Answering",
            "Document Question Answering",
            "Image Captioning",

            "Mask Filling",
            "Named Entity Recognition", 
            "Translation"
        ],
        captions = [
            "**pipeline(task=“sentiment-analysis”)**",
            "pipeline(task=“text-generation”)",
            "pipeline(task=“summarization”)",
            "pipeline(task=“image-classification”)",
            "pipeline(task=“image-segmentation”)",
            "pipeline(task=“object-detection”)",
            "pipeline(task=“audio-classification”)",
            "pipeline(task=“automatic-speech-recognition”)",
            "pipeline(task=“vqa”)",
            "pipeline(task=“document-question-answering”)",
            "pipeline(task=“image-to-text”)"
            
            "Mask Filling",
            "Named Entity Recognition",
            "Translation"
         ], index=0)


with col2:
     
    st.subheader(f"Example: {taskType}")
    if taskType == "Sentiment Analysis or Text classification":
        sentiment_analysis()

    if taskType == "Text Generation":
        text_generation()

    if taskType == "Summarization":
        summarization()

    if taskType == "Image Classification":
        image_classification()

    if taskType == "Image Segmentation":
        image_segmentation()

    if taskType == "Object Detection":
        object_detection()

    if taskType == "Audio Classification":
        audio_classification()

    if taskType == "Automatic Speech Recognition":
       automatic_speech_recognition()

    if taskType == "Document Question Answering":
         document_question_answering()

    if taskType == "Image Captioning":
         image_captioning()

    if taskType == "Mask Filling":
        mask_filling()

    if taskType == "Named Entity Recognition":
        named_entity_recognition()

    if taskType == "Translation":
        translation()