File size: 9,653 Bytes
9bd9742 565d0b3 9bd9742 52c1378 9bd9742 565d0b3 9bd9742 ba783b8 9bd9742 f3e00ea 9bd9742 297a370 9bd9742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# flake8: noqa: E402
import sys, os
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np
net_g = None
if sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
device = "cpu"
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JP":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
torch.cuda.empty_cache()
return audio
def tts_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language
):
print(f"text: {text}, speaker: {speaker}")
slices = text.split("\n")
audio_list = []
with torch.no_grad():
for slice in slices:
audio = infer(
slice,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
)
audio_list.append(audio)
silence = np.zeros(hps.data.sampling_rate) # 生成1秒的静音
audio_list.append(silence) # 将静音添加到列表中
audio_concat = np.concatenate(audio_list)
return "Success", (hps.data.sampling_rate, audio_concat)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", default="./models/G_270K.pth", help="path of your model"
)
parser.add_argument(
"-c",
"--config",
default="./models/config.json",
help="path of your config file",
)
parser.add_argument(
"--share", default=False, help="make link public", action="store_true"
)
parser.add_argument(
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
)
parser.add_argument(
"--info_md", default='./info.md', help="info markdown file"
)
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = ["JP"]
with gr.Blocks(title="Umamusume-DeBERTa-VITS2") as app:
with gr.Row():
with gr.Column():
text = gr.TextArea(
label="Text",
placeholder="Input Text Here",
value="サイーゲームス!。ウマ娘、プリティーダービー!",
)
speaker = gr.Dropdown(
choices=speakers, value=speakers[0], label="Speaker"
)
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.05, label="SDP Ratio (个人认为更大的SDP Ratio会产生\"感情更强烈的\"语音) (I personally believe that a larger SDP Ratio will make the generated voice \"emotionally stronger\")"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.05, label="Noise Scale"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.05, label="Noise Scale W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.05, label="Length Scale (控制生成语音的长度) (Controlling the length of the generated audio)"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="Language"
)
btn = gr.Button("Generate!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
samples = gr.Textbox(label="WEIRD Samples Given By GPT-4")
samples.value = "⚠ 强烈不建议将所有内容扔进输入,这会导致相当久的推理时间 ⚠\n" \
"⚠ すべての内容をお入りになることがお勧めしませんで、生成時間が非常に長くなるでしょう ⚠\n" \
"⚠ Throwing Everything into text input leads to unexpected long inference time ⚠\n" \
"おはよう、今日も一緒に頑張りましょうね!\n" \
+ "ねえねえ、あなたの好きなお料理作ってあげるよ!\n" \
+ "きゃー!びっくりさせないでよ~!\n" \
+ "あのね、新しいドレス買ったの。どう思う?\n" \
+ "あっ、遅くなっちゃった!ごめんなさい!\n" \
+ "今日のデート、すごく楽しかったよ!また行きましょうね!\n" \
+ "私のこと、好き?\n" \
+ "あなたといると、時間があっという間に過ぎちゃうね。\n" \
+ "あたし、あなたが大好きだよ。\n" \
+ "ねえ、もっと話して!あなたの話、大好きなの!\n" \
+ "あっ、それ可愛いね!私に似合うかな?\n" \
+ "あなたのこと、ずっと考えてたんだよ。\n" \
+ "今日はどんな一日だった?私にも話して!\n" \
+ "あなたの笑顔、大好き!もっと見せて!\n" \
+ "おやすみ、いい夢見てね!"
with open(args.info_md, 'r', encoding='UTF-8') as file:
data = file.read()
md_info = gr.Markdown(data)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
],
outputs=[text_output, audio_output],
)
app.launch()
|