File size: 9,653 Bytes
9bd9742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba2a7c
9bd9742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba783b8
9bd9742
 
 
 
 
f3e00ea
9bd9742
 
 
 
 
 
 
 
297a370
9bd9742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# flake8: noqa: E402

import sys, os

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np


net_g = None

if sys.platform == "darwin" and torch.backends.mps.is_available():
    device = "mps"
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
    device = "cpu"


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JP":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    global net_g
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
                .data.cpu()
                .float()
                .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        torch.cuda.empty_cache()
        return audio


def tts_fn(
        text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language
):
    print(f"text: {text}, speaker: {speaker}")
    slices = text.split("\n")
    audio_list = []
    with torch.no_grad():
        for slice in slices:
            audio = infer(
                slice,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language=language,
            )
            audio_list.append(audio)
            silence = np.zeros(hps.data.sampling_rate)  # 生成1秒的静音
            audio_list.append(silence)  # 将静音添加到列表中
    audio_concat = np.concatenate(audio_list)
    return "Success", (hps.data.sampling_rate, audio_concat)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", default="./models/G_180K.pth", help="path of your model"
    )
    parser.add_argument(
        "-c",
        "--config",
        default="./models/config.json",
        help="path of your config file",
    )
    parser.add_argument(
        "--share", default=False, help="make link public", action="store_true"
    )
    parser.add_argument(
        "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
    )
    parser.add_argument(
        "--info_md", default='./info.md', help="info markdown file"
    )

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config)

    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = ["JP"]
    with gr.Blocks(title="Umamusume-DeBERTa-VITS2") as app:
        with gr.Row():
            with gr.Column():
                text = gr.TextArea(
                    label="Text",
                    placeholder="Input Text Here",
                    value="サイーゲームス!。ウマ娘、プリティーダービー!",
                )
                speaker = gr.Dropdown(
                    choices=speakers, value=speakers[0], label="Speaker"
                )
                sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.2, step=0.05, label="SDP Ratio (个人认为更大的SDP Ratio会产生\"感情更强烈的\"语音) (I personally believe that a larger SDP Ratio will make the generated voice \"emotionally stronger\")"
                )
                noise_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=0.6, step=0.05, label="Noise Scale"
                )
                noise_scale_w = gr.Slider(
                    minimum=0.1, maximum=2, value=0.8, step=0.05, label="Noise Scale W"
                )
                length_scale = gr.Slider(
                    minimum=0.1, maximum=2, value=1, step=0.05, label="Length Scale (控制生成语音的长度) (Controlling the length of the generated audio)"
                )
                language = gr.Dropdown(
                    choices=languages, value=languages[0], label="Language"
                )
                btn = gr.Button("Generate!", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="Message")
                audio_output = gr.Audio(label="Output Audio")
                samples = gr.Textbox(label="WEIRD Samples Given By GPT-4")
                samples.value = "⚠ 强烈不建议将所有内容扔进输入,这会导致相当久的推理时间 ⚠\n" \
                                "⚠ すべての内容をお入りになることがお勧めしませんで、生成時間が非常に長くなるでしょう ⚠\n" \
                                "⚠ Throwing Everything into text input leads to unexpected long inference time ⚠\n" \
                                "おはよう、今日も一緒に頑張りましょうね!\n" \
                                + "ねえねえ、あなたの好きなお料理作ってあげるよ!\n" \
                                + "きゃー!びっくりさせないでよ~!\n" \
                                + "あのね、新しいドレス買ったの。どう思う?\n" \
                                + "あっ、遅くなっちゃった!ごめんなさい!\n" \
                                + "今日のデート、すごく楽しかったよ!また行きましょうね!\n" \
                                + "私のこと、好き?\n" \
                                + "あなたといると、時間があっという間に過ぎちゃうね。\n" \
                                + "あたし、あなたが大好きだよ。\n" \
                                + "ねえ、もっと話して!あなたの話、大好きなの!\n" \
                                + "あっ、それ可愛いね!私に似合うかな?\n" \
                                + "あなたのこと、ずっと考えてたんだよ。\n" \
                                + "今日はどんな一日だった?私にも話して!\n" \
                                + "あなたの笑顔、大好き!もっと見せて!\n" \
                                + "おやすみ、いい夢見てね!"
                with open(args.info_md, 'r', encoding='UTF-8') as file:
                    data = file.read()
                    md_info = gr.Markdown(data)

        btn.click(
            tts_fn,
            inputs=[
                text,
                speaker,
                sdp_ratio,
                noise_scale,
                noise_scale_w,
                length_scale,
                language,
            ],
            outputs=[text_output, audio_output],
        )
    app.launch()