File size: 11,932 Bytes
712579e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import weaviate
from weaviate.classes.init import Auth
from dotenv import load_dotenv
import google.genai as genai
import logging
from configs import load_yaml_config
from groq import Groq
from openai import OpenAI
from datetime import datetime
import requests
from prompt_template import Prompt_template_LLM_Generation
# Import logger here to avoid circular imports
try:
from logger.custom_logger import CustomLoggerTracker
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("clients")
except ImportError:
# Fallback to standard logging if custom logger not available
logger = logging.getLogger("clients")
# Load environment variables
load_dotenv()
config = load_yaml_config("config.yaml")
## Groq
GROQ_URL = os.environ["GROQ_URL"]
GROQ_API_TOKEN= os.environ["GROQ_API_TOKEN"]
## Deepinfra
DEEPINFRA_API_KEY = os.environ["DEEPINFRA_API_KEY"]
DEEPINFRA_URL = os.environ["DEEPINFRA_URL"]
DEEPINFRA_EMBEDDING_URL = os.environ["DEEPINFRA_EMBEDDING_URL"]
DEEPINFRA_RERANK_URL = os.environ["DEEPINFRA_RERANK_URL"]
def init_weaviate_client():
url = os.getenv("WEAVIATE_URL")
api_key = os.getenv("WEAVIATE_API_KEY")
if not url or not api_key:
logger.warning(
"Weaviate credentials missing (WEAVIATE_URL/WEAVIATE_API_KEY).")
return None
logger.info("Attempting to connect to Weaviate cloud...")
client = weaviate.connect_to_weaviate_cloud(
cluster_url=url,
auth_credentials=Auth.api_key(api_key),
skip_init_checks=True)
if client is None:
logger.error(f"failed to init client...")
logger.info("Successfully connected to Weaviate cloud.")
return client
def get_weaviate_client():
if not hasattr(get_weaviate_client, '_client'):
get_weaviate_client._client = init_weaviate_client()
return get_weaviate_client._client
def close_weaviate_client():
"""Close the Weaviate client connection if it exists."""
if hasattr(get_weaviate_client, '_client') and get_weaviate_client._client:
get_weaviate_client._client.close()
delattr(get_weaviate_client, '_client')
def gemini_client():
return genai.Client(api_key=os.environ["GEMINI_API_KEY"])
def groq_client():
return Groq(api_key=os.environ.get("GROQ_API_KEY"),)
# def qwen_generate_content(prompt: str) -> str:
# """Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
# if not (os.environ['SILICONFLOW_URL'] and os.environ['SILICONFLOW_API_KEY']):
# logger.error("SILICONFLOW_URL or SILICONFLOW_API_KEY not configured.")
# return ""
# client = OpenAI(base_url=os.environ['SILICONFLOW_URL'], api_key=os.environ['SILICONFLOW_API_KEY'])
# logger.info("Calling Qwen/Qwen3-30B-Instruct for generation...")
# output = ""
# logger.info(f"{config['apis_models']['silicon_flow']['qwen']['chat3_30b']}")
# response = client.chat.completions.create(
# model=config["apis_models"]["silicon_flow"]["qwen"]["chat3_30b"],
# messages=[{"role": "user", "content": prompt}],
# stream=True)
# for chunk in response:
# if not getattr(chunk, "choices", None):
# continue
# delta = chunk.choices[0].delta
# if getattr(delta, "content", None):
# output += delta.content
# # if hasattr(delta, "reasoning_content") and delta.reasoning_content:
# # output += delta.reasoning_content
# logger.info("Successfully generated content with Qwen")
# return output.strip()
def groq_qwen_generate_content(prompt: str) -> str:
"""Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
if not (GROQ_URL and GROQ_API_TOKEN):
logger.error("GROQ_URL or GROQ_API_TOKEN not configured.")
return ""
client = OpenAI(base_url=GROQ_URL, api_key=GROQ_API_TOKEN)
if client is None:
logger.error("Failed to initialize Groq client.")
return ""
else:
logger.info("Successfully initialized Groq client.")
# logger.info("Calling Qwen/Qwen3-32B for generation from Groq...")
logger.info("Calling openai/gpt-oss-120b for generation from Groq")
output = ""
response = client.chat.completions.create(
# model=config["apis_models"]["groq"]["qwen"]["chat3_32b"],
model = config["apis_models"]["groq"]["openai"]["gpt_oss"],
messages=[{"role": "user", "content": prompt}],
stream=True,)
# reasoning_effort="none")
for chunk in response:
if not getattr(chunk, "choices", None):
continue
delta = chunk.choices[0].delta
if getattr(delta, "content", None):
output += delta.content
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
output += delta.reasoning_content
logger.info("Successfully generated content with Qwen")
return output.strip()
def siliconflow_qwen_generate_content(prompt: str) -> str:
"""Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
if not (os.environ['SILICONFLOW_URL'] and os.environ['SILICONFLOW_API_KEY']):
logger.error("SILICONFLOW_URL or SILICONFLOW_API_KEY not configured.")
return ""
client = OpenAI(base_url=os.environ['SILICONFLOW_URL'], api_key=os.environ['SILICONFLOW_API_KEY'])
if client is None:
logger.error("Failed to initialize SiliconFlow client.")
return ""
else:
logger.info("Successfully initialized SiliconFlow client.")
logger.info("Calling Qwen/Qwen3-30B-Instruct for generation...")
output = ""
logger.info(f"{config['apis_models']['silicon_flow']['qwen']['chat3_30b']}")
response = client.chat.completions.create(
model=config["apis_models"]["silicon_flow"]["qwen"]["chat3_30b"],
messages=[{"role": "user", "content": prompt}],
stream=True)
for chunk in response:
if not getattr(chunk, "choices", None):
continue
delta = chunk.choices[0].delta
if getattr(delta, "content", None):
output += delta.content
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
output += delta.reasoning_content
logger.info("Successfully generated content with Qwen")
return output.strip()
def deepinfra_qwen_generate_content(prompt: str) -> str:
"""Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
if not (DEEPINFRA_URL and DEEPINFRA_API_KEY):
logger.error("GROQ_URL or GROQ_API_TOKEN not configured.")
return ""
client = OpenAI(base_url=DEEPINFRA_URL, api_key=DEEPINFRA_API_KEY)
if client is None:
logger.error("Failed to initialize Groq client.")
return ""
else:
logger.info("Successfully initialized Groq client.")
# logger.info("Calling Qwen/Qwen3-32B for generation from DeepInfra...")
logger.info("Calling openai gpt-oss-120b for generation from DeepInfra...")
output = ""
response = client.chat.completions.create(
# model=config["apis_models"]["groq"]["qwen"]["chat3_32b"],
model = config["apis_models"]["groq"]["openai"]["gpt_oss"],
messages=[{"role": "user", "content": prompt}],
temperature=1,
max_completion_tokens=8192,
top_p=1,
reasoning_effort="low",
stream=True,
tools=[{"type":"browser_search"}])
# reasoning_effort="none")
for chunk in response:
if not getattr(chunk, "choices", None):
continue
delta = chunk.choices[0].delta
if getattr(delta, "content", None):
output += delta.content
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
output += delta.reasoning_content
logger.info("Successfully generated content with Qwen")
return output.strip()
def deepinfra_embedding(texts: list[str], batch_size: int = 50) -> list[list[float]]:
all_embeddings = []
headers = {
"Authorization": f"Bearer {DEEPINFRA_API_KEY}",
"Content-Type": "application/json"}
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
payload = {
"model": config["apis_models"]["deepinfra"]["qwen"]["embed"],
"input": batch}
try:
response = requests.post(
DEEPINFRA_EMBEDDING_URL, json=payload, headers=headers)
# Check if request was successful
if response.status_code != 200:
logger.error(f"DeepInfra API error {response.status_code}: {response.text}")
# Return empty embeddings for failed batch
all_embeddings.extend([[] for _ in batch])
continue
data = response.json()
# Check for API error in response
if "detail" in data and "error" in data["detail"]:
logger.error(f"DeepInfra API error: {data['detail']['error']}")
# Return empty embeddings for failed batch
all_embeddings.extend([[] for _ in batch])
continue
if "data" not in data:
logger.error(f"Invalid response format: {data}")
# Return empty embeddings for failed batch
all_embeddings.extend([[] for _ in batch])
continue
batch_embs = [item["embedding"] for item in data["data"]]
all_embeddings.extend(batch_embs)
except requests.RequestException as e:
logger.error(f"Request failed: {e}")
# Return empty embeddings for failed batch
all_embeddings.extend([[] for _ in batch])
return all_embeddings
def deepinfra_rerank(batch: list[str], items_to_rerank: list[str]) -> list[str]:
payload = {
"model": config["apis_models"]["deepinfra"]["qwen"]["rerank"],
"input": batch}
headers = {
"Authorization": f"Bearer {DEEPINFRA_API_KEY}",
"Content-Type": "application/json"}
r = requests.post(
DEEPINFRA_RERANK_URL,
json=payload,
headers=headers,
timeout=60,)
if r.ok:
rerank_data = r.json()
ranked_docs = sorted(
zip(rerank_data.get("results", []), items_to_rerank),
key=lambda x: x[0].get("relevance_score", 0),
reverse=True)
reranked = ranked_docs[0][1] if ranked_docs else batch
return reranked
else:
return batch
def deepinfra_client():
return OpenAI(api_key=os.environ["DEEPINFRA_API_KEY"], base_url=os.environ["DEEPINFRA_URL"],)
def qwen_generate(prompt: str) -> str:
"""Streaming chat completion with Qwen on SiliconFlow and Groq via OpenAI client."""
if config["apis_models"]["num"] == 1:
return siliconflow_qwen_generate_content(prompt)
else:
return groq_qwen_generate_content(prompt)
if __name__ == "__main__":
# client = init_weaviate_client()
# if client is None:
# logger.error(f"api of weaviate is not working")
# client.close()
gen_prompt = Prompt_template_LLM_Generation.format(
new_query="what is autism")
logger.info(f"groq qwen generate.....: {groq_qwen_generate_content(gen_prompt)}")
print(f"=" * 50)
response = siliconflow_qwen_generate_content("what is autism")
logger.info(f"siliconflow qwen response: {response}")
print(f"=" * 50)
# Try DeepInfra first, then fallback to Groq
response = deepinfra_embedding(["what is autism"], 1)
if response and response[0]: # Check if we got valid embeddings
logger.info(f"deepinfra embedding response: {response}")
else:
raise ValueError("Empty embeddings returned")
print(f"=" * 50)
response = deepinfra_rerank(["what is autism"], ["what is autism"])
logger.info(f"deepinfra rerank response: {response}") |