File size: 11,932 Bytes
712579e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import weaviate
from weaviate.classes.init import Auth
from dotenv import load_dotenv
import google.genai as genai
import logging
from configs import load_yaml_config
from groq import Groq
from openai import OpenAI
from datetime import datetime
import requests
from prompt_template import Prompt_template_LLM_Generation


# Import logger here to avoid circular imports
try:
    from logger.custom_logger import CustomLoggerTracker
    custom_log = CustomLoggerTracker()
    logger = custom_log.get_logger("clients")
except ImportError:
    # Fallback to standard logging if custom logger not available
    logger = logging.getLogger("clients")

# Load environment variables
load_dotenv()


config = load_yaml_config("config.yaml")



## Groq
GROQ_URL = os.environ["GROQ_URL"]
GROQ_API_TOKEN= os.environ["GROQ_API_TOKEN"]


## Deepinfra
DEEPINFRA_API_KEY = os.environ["DEEPINFRA_API_KEY"]
DEEPINFRA_URL = os.environ["DEEPINFRA_URL"]
DEEPINFRA_EMBEDDING_URL = os.environ["DEEPINFRA_EMBEDDING_URL"]
DEEPINFRA_RERANK_URL = os.environ["DEEPINFRA_RERANK_URL"]


def init_weaviate_client():
    url = os.getenv("WEAVIATE_URL")
    api_key = os.getenv("WEAVIATE_API_KEY")
    if not url or not api_key:
        logger.warning(
            "Weaviate credentials missing (WEAVIATE_URL/WEAVIATE_API_KEY).")
        return None

    logger.info("Attempting to connect to Weaviate cloud...")
    client = weaviate.connect_to_weaviate_cloud(
        cluster_url=url,
        auth_credentials=Auth.api_key(api_key),
        skip_init_checks=True)

    if client is None:
        logger.error(f"failed to init client...")
    logger.info("Successfully connected to Weaviate cloud.")
    return client


def get_weaviate_client():
    if not hasattr(get_weaviate_client, '_client'):
        get_weaviate_client._client = init_weaviate_client()
    return get_weaviate_client._client


def close_weaviate_client():
    """Close the Weaviate client connection if it exists."""
    if hasattr(get_weaviate_client, '_client') and get_weaviate_client._client:
        get_weaviate_client._client.close()
        delattr(get_weaviate_client, '_client')


def gemini_client():
    return genai.Client(api_key=os.environ["GEMINI_API_KEY"])

def groq_client():
    return Groq(api_key=os.environ.get("GROQ_API_KEY"),)




# def qwen_generate_content(prompt: str) -> str:
#     """Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
#     if not (os.environ['SILICONFLOW_URL'] and os.environ['SILICONFLOW_API_KEY']):
#         logger.error("SILICONFLOW_URL or SILICONFLOW_API_KEY not configured.")
#         return ""
        
#     client = OpenAI(base_url=os.environ['SILICONFLOW_URL'], api_key=os.environ['SILICONFLOW_API_KEY'])
#     logger.info("Calling Qwen/Qwen3-30B-Instruct for generation...")
#     output = ""
#     logger.info(f"{config['apis_models']['silicon_flow']['qwen']['chat3_30b']}")
#     response = client.chat.completions.create(
#         model=config["apis_models"]["silicon_flow"]["qwen"]["chat3_30b"],
#         messages=[{"role": "user", "content": prompt}],
#         stream=True)

#     for chunk in response:
#         if not getattr(chunk, "choices", None):
#             continue
#         delta = chunk.choices[0].delta
#         if getattr(delta, "content", None):
#             output += delta.content

#         # if hasattr(delta, "reasoning_content") and delta.reasoning_content:
#         #     output += delta.reasoning_content

#     logger.info("Successfully generated content with Qwen")
#     return output.strip()



def groq_qwen_generate_content(prompt: str) -> str:
    """Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
    if not (GROQ_URL and GROQ_API_TOKEN):
        logger.error("GROQ_URL or GROQ_API_TOKEN not configured.")
        return ""
        
    client = OpenAI(base_url=GROQ_URL, api_key=GROQ_API_TOKEN)
    if client is None:
        logger.error("Failed to initialize Groq client.")
        return ""
    else:
        logger.info("Successfully initialized Groq client.")
    # logger.info("Calling Qwen/Qwen3-32B for generation from Groq...")
    logger.info("Calling openai/gpt-oss-120b for generation from Groq")

    output = ""
    response = client.chat.completions.create(
        # model=config["apis_models"]["groq"]["qwen"]["chat3_32b"],
        model = config["apis_models"]["groq"]["openai"]["gpt_oss"],
        messages=[{"role": "user", "content": prompt}],
        stream=True,)
        # reasoning_effort="none")
    for chunk in response:
        if not getattr(chunk, "choices", None):
            continue
        delta = chunk.choices[0].delta
        if getattr(delta, "content", None):
            output += delta.content
        if hasattr(delta, "reasoning_content") and delta.reasoning_content:
            output += delta.reasoning_content
    logger.info("Successfully generated content with Qwen")
    return output.strip()




def siliconflow_qwen_generate_content(prompt: str) -> str:
    """Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
    if not (os.environ['SILICONFLOW_URL'] and os.environ['SILICONFLOW_API_KEY']):
        logger.error("SILICONFLOW_URL or SILICONFLOW_API_KEY not configured.")
        return ""
    client = OpenAI(base_url=os.environ['SILICONFLOW_URL'], api_key=os.environ['SILICONFLOW_API_KEY'])
    if client is None:
        logger.error("Failed to initialize SiliconFlow client.")
        return ""
    else:
        logger.info("Successfully initialized SiliconFlow client.")
    logger.info("Calling Qwen/Qwen3-30B-Instruct for generation...")
    output = ""
    logger.info(f"{config['apis_models']['silicon_flow']['qwen']['chat3_30b']}")
    response = client.chat.completions.create(
        model=config["apis_models"]["silicon_flow"]["qwen"]["chat3_30b"],
        messages=[{"role": "user", "content": prompt}],
        stream=True)
    for chunk in response:
        if not getattr(chunk, "choices", None):
            continue
        delta = chunk.choices[0].delta
        if getattr(delta, "content", None):
            output += delta.content
        if hasattr(delta, "reasoning_content") and delta.reasoning_content:
            output += delta.reasoning_content
    logger.info("Successfully generated content with Qwen")
    return output.strip()



def deepinfra_qwen_generate_content(prompt: str) -> str:
    """Streaming chat completion with Qwen on SiliconFlow via OpenAI client."""
    if not (DEEPINFRA_URL and DEEPINFRA_API_KEY):
        logger.error("GROQ_URL or GROQ_API_TOKEN not configured.")
        return ""
        
    client = OpenAI(base_url=DEEPINFRA_URL, api_key=DEEPINFRA_API_KEY)
    if client is None:
        logger.error("Failed to initialize Groq client.")
        return ""
    else:
        logger.info("Successfully initialized Groq client.")
    # logger.info("Calling Qwen/Qwen3-32B for generation from DeepInfra...")
    logger.info("Calling openai gpt-oss-120b for generation from DeepInfra...")
    output = ""
    response = client.chat.completions.create(
        # model=config["apis_models"]["groq"]["qwen"]["chat3_32b"],
        model = config["apis_models"]["groq"]["openai"]["gpt_oss"],
        messages=[{"role": "user", "content": prompt}],
        temperature=1,
        max_completion_tokens=8192,
        top_p=1,
        reasoning_effort="low",
        stream=True,
        tools=[{"type":"browser_search"}])

        # reasoning_effort="none")
    for chunk in response:
        if not getattr(chunk, "choices", None):
            continue
        delta = chunk.choices[0].delta
        if getattr(delta, "content", None):
            output += delta.content
        if hasattr(delta, "reasoning_content") and delta.reasoning_content:
            output += delta.reasoning_content
    logger.info("Successfully generated content with Qwen")
    return output.strip()



def deepinfra_embedding(texts: list[str], batch_size: int = 50) -> list[list[float]]:
    all_embeddings = []
    headers = {
        "Authorization": f"Bearer {DEEPINFRA_API_KEY}",
        "Content-Type": "application/json"}
    for i in range(0, len(texts), batch_size):
        batch = texts[i:i + batch_size]
        payload = {
            "model": config["apis_models"]["deepinfra"]["qwen"]["embed"],
            "input": batch}
        try:
            response = requests.post(
                DEEPINFRA_EMBEDDING_URL, json=payload, headers=headers)
            # Check if request was successful
            if response.status_code != 200:
                logger.error(f"DeepInfra API error {response.status_code}: {response.text}")
                # Return empty embeddings for failed batch
                all_embeddings.extend([[] for _ in batch])
                continue
            data = response.json()
            # Check for API error in response
            if "detail" in data and "error" in data["detail"]:
                logger.error(f"DeepInfra API error: {data['detail']['error']}")
                # Return empty embeddings for failed batch
                all_embeddings.extend([[] for _ in batch])
                continue
            if "data" not in data:
                logger.error(f"Invalid response format: {data}")
                # Return empty embeddings for failed batch
                all_embeddings.extend([[] for _ in batch])
                continue
            batch_embs = [item["embedding"] for item in data["data"]]
            all_embeddings.extend(batch_embs)
        except requests.RequestException as e:
            logger.error(f"Request failed: {e}")
            # Return empty embeddings for failed batch
            all_embeddings.extend([[] for _ in batch])
    return all_embeddings



def deepinfra_rerank(batch: list[str], items_to_rerank: list[str]) -> list[str]:
    payload = {
        "model": config["apis_models"]["deepinfra"]["qwen"]["rerank"],
        "input": batch}
    headers = {
        "Authorization": f"Bearer {DEEPINFRA_API_KEY}",
        "Content-Type": "application/json"}
    r = requests.post(
        DEEPINFRA_RERANK_URL,
        json=payload,
        headers=headers,
        timeout=60,)
    if r.ok:
        rerank_data = r.json()
        ranked_docs = sorted(
            zip(rerank_data.get("results", []), items_to_rerank),
            key=lambda x: x[0].get("relevance_score", 0),
            reverse=True)
        reranked = ranked_docs[0][1] if ranked_docs else batch
        return reranked
    else:
        return batch

def deepinfra_client():
   return OpenAI(api_key=os.environ["DEEPINFRA_API_KEY"], base_url=os.environ["DEEPINFRA_URL"],)


def qwen_generate(prompt: str) -> str:
    """Streaming chat completion with Qwen on SiliconFlow and Groq via OpenAI client."""
    if config["apis_models"]["num"] == 1:
        return siliconflow_qwen_generate_content(prompt)
    else:
        return groq_qwen_generate_content(prompt)



if __name__ == "__main__":
    # client = init_weaviate_client()
    # if client is None:
    #     logger.error(f"api of weaviate is not working")
    # client.close()
    
    gen_prompt = Prompt_template_LLM_Generation.format(
        new_query="what is autism")
    logger.info(f"groq qwen generate.....: {groq_qwen_generate_content(gen_prompt)}")
    
    print(f"=" * 50)
    response = siliconflow_qwen_generate_content("what is autism")
    logger.info(f"siliconflow qwen response: {response}")

    print(f"=" * 50)
    
    # Try DeepInfra first, then fallback to Groq
    response = deepinfra_embedding(["what is autism"], 1)
    if response and response[0]:  # Check if we got valid embeddings
        logger.info(f"deepinfra embedding response: {response}")
    else:
        raise ValueError("Empty embeddings returned")


    print(f"=" * 50)
    response = deepinfra_rerank(["what is autism"], ["what is autism"])
    logger.info(f"deepinfra rerank response: {response}")