Spaces:
Sleeping
Sleeping
File size: 7,507 Bytes
3a98934 33c23f4 a1c7d58 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 a1c7d58 5195c9e 33c23f4 a1c7d58 33c23f4 a1c7d58 33c23f4 a1c7d58 33c23f4 a1c7d58 33c23f4 a1c7d58 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e 33c23f4 5195c9e a1c7d58 33c23f4 5195c9e a1c7d58 5195c9e 33c23f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import json
import random
import torch
import torchaudio
from torch.utils.data import Dataset, DataLoader
from huggingface_hub import upload_folder
from transformers.integrations import TensorBoardCallback
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import (
Wav2Vec2FeatureExtractor, HubertConfig, HubertForSequenceClassification,
Trainer, TrainingArguments,
EarlyStoppingCallback
)
MODEL = "ntu-spml/distilhubert" # modelo base utilizado, para usar otro basta con cambiar esto
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL)
seed = 123
MAX_DURATION = 1.00
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16000
token = os.getenv("HF_TOKEN") # TODO: probar a guardar el token en un archivo en local
config_file = "models_config.json"
clasificador = "class"
monitor = "mon"
batch_size = 16
class AudioDataset(Dataset):
def __init__(self, dataset_path, label2id):
self.dataset_path = dataset_path
self.label2id = label2id
self.file_paths = []
self.labels = []
for label_dir, label_id in self.label2id.items():
label_path = os.path.join(self.dataset_path, label_dir)
if os.path.isdir(label_path):
for file_name in os.listdir(label_path):
audio_path = os.path.join(label_path, file_name)
self.file_paths.append(audio_path)
self.labels.append(label_id)
self.file_paths.sort(key=lambda x: x.split('_part')[0])
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
audio_path = self.file_paths[idx]
label = self.labels[idx]
input_values = self.preprocess_audio(audio_path)
return {
"input_values": input_values,
"labels": torch.tensor(label)
}
def preprocess_audio(self, audio_path):
waveform, sample_rate = torchaudio.load(
audio_path,
normalize=True, # Convierte a float32
# num_frames= # TODO: Probar para que no haga falta recortar los audios
)
if sample_rate != SAMPLING_RATE: # Resamplear si no es 16kHz
resampler = torchaudio.transforms.Resample(sample_rate, SAMPLING_RATE)
waveform = resampler(waveform)
if waveform.shape[0] > 1: # Si es stereo, convertir a mono
waveform = waveform.mean(dim=0, keepdim=True)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-6) # Sin 1e-6 el accuracy es pésimo!!
max_length = int(SAMPLING_RATE * MAX_DURATION)
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
else:
waveform = torch.nn.functional.pad(waveform, (0, max_length - waveform.shape[1]))
inputs = FEATURE_EXTRACTOR(
waveform.squeeze(),
sampling_rate=SAMPLING_RATE,
return_tensors="pt",
# max_length=int(SAMPLING_RATE * MAX_DURATION),
# truncation=True,
padding=True,
)
return inputs.input_values.squeeze()
def seed_everything():
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16384:8'
def build_label_mappings(dataset_path):
label2id = {}
id2label = {}
label_id = 0
for label_dir in os.listdir(dataset_path):
if os.path.isdir(os.path.join(dataset_path, label_dir)):
label2id[label_dir] = label_id
id2label[label_id] = label_dir
label_id += 1
return label2id, id2label
def create_dataloader(dataset_path, test_size=0.2, num_workers=12, shuffle=True, pin_memory=True):
label2id, id2label = build_label_mappings(dataset_path)
dataset = AudioDataset(dataset_path, label2id)
dataset_size = len(dataset)
indices = list(range(dataset_size))
random.shuffle(indices)
split_idx = int(dataset_size * (1 - test_size))
train_indices = indices[:split_idx]
test_indices = indices[split_idx:]
train_dataset = torch.utils.data.Subset(dataset, train_indices)
test_dataset = torch.utils.data.Subset(dataset, test_indices)
train_dataloader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory
)
test_dataloader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory
)
return train_dataloader, test_dataloader, label2id, id2label
def load_model(num_labels, label2id, id2label):
config = HubertConfig.from_pretrained(
MODEL,
num_labels=num_labels,
label2id=label2id,
id2label=id2label,
finetuning_task="audio-classification"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = HubertForSequenceClassification.from_pretrained( # TODO: mirar parámetros. Posibles optimizaciones
MODEL,
config=config,
torch_dtype=torch.float32, # No afecta 1ª época, mejor ponerlo
)
model.to(device)
return model
def model_params(dataset_path):
train_dataloader, test_dataloader, label2id, id2label = create_dataloader(dataset_path)
model = load_model(num_labels=len(id2label), label2id=label2id, id2label=id2label)
return model, train_dataloader, test_dataloader, id2label
def compute_metrics(eval_pred):
predictions = torch.argmax(torch.tensor(eval_pred.predictions), dim=-1)
references = torch.tensor(eval_pred.label_ids)
accuracy = accuracy_score(references, predictions)
precision, recall, f1, _ = precision_recall_fscore_support(references, predictions, average='weighted')
return {
"accuracy": accuracy,
"precision": precision,
"recall": recall,
"f1": f1,
}
def main(training_args, output_dir, dataset_path):
seed_everything()
model, train_dataloader, test_dataloader, _ = model_params(dataset_path)
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataloader.dataset,
eval_dataset=test_dataloader.dataset,
callbacks=[TensorBoardCallback(), EarlyStoppingCallback(early_stopping_patience=3)]
)
torch.cuda.empty_cache() # liberar memoria de la GPU
trainer.train() # se pueden modificar los parámetros para continuar el train
os.makedirs(output_dir, exist_ok=True) # Crear carpeta con el modelo si no existe
trainer.save_model(output_dir) # para subir el modelo a Hugging Face. Necesario para hacer la predicción, no sé por qué.
# upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}",folder_path=output_dir, token=token) # subir modelo a organización
def load_config(model_name):
with open(config_file, 'r') as f:
config = json.load(f)
model_config = config[model_name]
training_args = TrainingArguments(**model_config["training_args"])
model_config["training_args"] = training_args
return model_config
if __name__ == "__main__":
config = load_config(clasificador) # PARA MONITOR
# config = load_config(monitor) # PARA CLASIFICADOR
training_args = config["training_args"]
output_dir = config["output_dir"]
dataset_path = config["dataset_path"]
main(training_args, output_dir, dataset_path)
|