File size: 9,994 Bytes
4796404 d5a736a 4796404 d5a736a 4796404 4b5e3fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import io
import folium
import joblib
import datetime
import numpy as np
import gradio as gr
import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt
# Load model and scaler
lgb_model = joblib.load("lgb_occupancy_model.pkl")
scaler = joblib.load("scaler.pkl")
# Load data for historical patterns (you may want to refactor this)
model_df = pd.read_pickle("Cluster_Demand_model_df.pkl")
holiday_dates = pd.read_json("holidays_2022_2025.json")['date']
holiday_dates = pd.to_datetime(holiday_dates).dt.normalize()
holiday_dates = set(holiday_dates)
feature_columns = joblib.load('feature_columns.pkl')
# Load properties data
properties_df = pd.read_csv('CTVNS_Properties.csv')
properties_cols_to_keep = ['Property Name','Property ID', 'Star Rating', 'Property Type', 'Distance from Center','Latitude','Longitude']
properties_filtered_df = properties_df[properties_cols_to_keep].copy()
# Create dropdown options with property name or ID
property_options = properties_filtered_df['Property Name'].astype(str).tolist()
property_type_mapping = {
'Hotel': 9,
'Homestay': 7,
'Guest House': 5,
'Resort': 11,
'Hostel': 8,
'BnB': 2,
'Villa': 12,
'Apartment': 1,
'Apart-hotel': 0,
'Holiday Home': 6,
'Cottage': 3,
'Lodge': 10,
'Farm House': 4
}
def forecast_by_property(property_name,adr):
# Find the selected row
selected_row = properties_filtered_df[properties_filtered_df['Property Name'].astype(str) == property_name]
if selected_row.empty:
return pd.DataFrame({'Error': ['Property Name not found.']})
star_rating = int(selected_row['Star Rating'].values[0])
property_type_str = selected_row['Property Type'].values[0]
property_type_cat = property_type_mapping.get(property_type_str, -1)
distance = float(selected_row['Distance from Center'].values[0])
lat = selected_row['Latitude']
lon = selected_row['Longitude']
# Call your original forecast function
return forecast(star_rating, property_type_cat, distance,lat,lon,property_name,adr)
def forecast_segment_all_features(starRating, propertyType_cat, distanceFromCenter, model_df, cutoff_date, end_date, scaler, lgb_model, full_feature_cols, X_train, holiday_dates, tolerance=0.1):
"""Forecasts occupancy for a given segment."""
cluster_hist = model_df[
(model_df['starRating'] == starRating) &
(model_df['propertyType_cat'] == propertyType_cat) &
(np.abs(model_df['distanceFromCenter'] - distanceFromCenter) <= tolerance) &
(model_df['date'] <= cutoff_date)
].sort_values('date')
if cluster_hist.empty:
print(f"Warning: No historical data found for segment ({starRating}, {propertyType_cat}, {distanceFromCenter}) up to {cutoff_date}.")
return None
extended_series = pd.DataFrame({'date': pd.date_range(start=cluster_hist['date'].min(), end=end_date)})
extended_series = extended_series.merge(cluster_hist[['date', 'occupiedRooms']], on='date', how='left').rename(columns={'occupiedRooms': 'occupied'})
for i in range(len(extended_series)):
current_date = extended_series.at[i, 'date']
if current_date <= pd.to_datetime(cutoff_date):
continue
day_of_week = current_date.dayofweek
day_of_year = current_date.timetuple().tm_yday
month = current_date.month
year = current_date.year
is_weekend = 1 if day_of_week in [4, 5] else 0
is_holiday = 1 if current_date in holiday_dates else 0
day_of_week_sin = np.sin(2 * np.pi * day_of_week / 7)
day_of_year_sin = np.sin(2 * np.pi * day_of_year / 365.25)
month_sin = np.sin(2 * np.pi * month / 12)
base_year = model_df['date'].dt.year.min()
year_scaled = year - base_year
lags = {}
for lag in [1, 7, 15]:
lags[f'lag_{lag}'] = extended_series.at[i - lag, 'occupied'] if i - lag >= 0 else np.nan
rolling_stats = {}
for window in [3, 7, 15]:
window_data = extended_series['occupied'].iloc[i - window:i] if i >= window else extended_series['occupied'].iloc[:i]
rolling_stats[f'rolling_{window}_mean'] = window_data.mean() if len(window_data) > 0 else np.nan
rolling_stats[f'rolling_{window}_std'] = window_data.std(ddof=0) if len(window_data) > 0 else np.nan
daily_change = extended_series.at[i, 'occupied'] - extended_series.at[i - 1, 'occupied'] if i > 0 and pd.notnull(extended_series.at[i - 1, 'occupied']) and pd.notnull(extended_series.at[i, 'occupied']) else np.nan
feature_vector = {
'starRating': starRating, 'distanceFromCenter': distanceFromCenter,
'day_of_week_sin': day_of_week_sin, 'day_of_year_sin': day_of_year_sin, 'month_sin': month_sin,
'year_scaled': year_scaled, 'is_weekend': is_weekend, 'is_holiday': is_holiday,
'lag_1': lags.get('lag_1', np.nan), 'lag_7': lags.get('lag_7', np.nan), 'lag_15': lags.get('lag_15', np.nan),
'rolling_3_mean': rolling_stats.get('rolling_3_mean', np.nan), 'rolling_3_std': rolling_stats.get('rolling_3_std', np.nan),
'rolling_7_mean': rolling_stats.get('rolling_7_mean', np.nan), 'rolling_7_std': rolling_stats.get('rolling_7_std', np.nan),
'rolling_15_mean': rolling_stats.get('rolling_15_mean', np.nan), 'rolling_15_std': rolling_stats.get('rolling_15_std', np.nan),
'daily_change': daily_change,
}
for j in range (10):
feature_vector[f'prop_type_{j}'] = 1 if propertyType_cat == j else 0
features = pd.DataFrame([feature_vector])
features = features.reindex(columns=feature_columns)
features.fillna(X_train.mean(numeric_only=True), inplace=True) # or another imputation strategy
features_scaled = scaler.transform(features)
pred = lgb_model.predict(features_scaled)[0]
extended_series.at[i, 'occupied'] = pred
if i > 0:
extended_series.at[i, 'daily_change'] = pred - extended_series.at[i - 1, 'occupied']
future_df = extended_series[extended_series['date'] > pd.to_datetime(cutoff_date)].copy()
future_df['starRating'] = starRating
future_df['distanceFromCenter'] = distanceFromCenter
future_df['propertyType_cat'] = propertyType_cat
return future_df
def forecast(starRating, propertyType_cat, distanceFromCenter,lat,lon,property_name,adr):
cutoff_date = datetime.datetime.today()
start_date = cutoff_date - pd.Timedelta(days=30)
end_date = cutoff_date + pd.Timedelta(days=30)
# Filter last 30 days of actuals from model_df
actual_df = model_df[
(model_df['starRating'] == starRating) &
(model_df['propertyType_cat'] == propertyType_cat) &
(model_df['distanceFromCenter'] == distanceFromCenter) &
(model_df['date'] >= start_date) &
(model_df['date'] <= cutoff_date)
][['date', 'occupiedRooms']].copy()
actual_df.rename(columns={'occupiedRooms': 'occupied'}, inplace=True)
actual_df['occupied'] = actual_df['occupied'] * 1.75
actual_df['occupied'] = np.ceil(actual_df['occupied'])
actual_df['source'] = 'Actual'
# Forecast next 30 days
future_df = forecast_segment_all_features(
starRating=starRating,
propertyType_cat=propertyType_cat,
distanceFromCenter=distanceFromCenter,
model_df=model_df,
cutoff_date=cutoff_date,
end_date=end_date,
scaler=scaler,
lgb_model=lgb_model,
full_feature_cols=None,
X_train=model_df,
holiday_dates=holiday_dates,
tolerance=0.1
)
if future_df is None:
return None, pd.DataFrame(columns=['date', 'occupied'])
future_df = future_df[['date', 'occupied']].copy()
future_df['occupied'] = np.ceil(future_df['occupied'])
future_df['occupied'] = future_df['occupied'] * 1.75
future_df['occupied'] = np.ceil(future_df['occupied'])
future_df['source'] = 'Forecast'
forecasted_rns = int(future_df['occupied'].sum())
forecasted_revenue = int(forecasted_rns * adr)
# Combine actual and forecast
combined_df = pd.concat([actual_df, future_df], ignore_index=True)
# Plot
plt.figure(figsize=(10, 4))
for label, df in combined_df.groupby('source'):
plt.plot(df['date'], df['occupied'], label=label, marker='o')
plt.xticks(rotation=45)
plt.xlabel("Date")
plt.ylabel("Occupancy")
plt.title("Hotel Occupancy: Last 30 Days (Actual) + Next 30 Days (Forecast)")
plt.grid(True)
plt.legend()
# Save plot to image buffer
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
image = Image.open(buf)
folium_map = folium.Map(location=[lat, lon], zoom_start=15)
folium.Marker([lat, lon], tooltip=property_name).add_to(folium_map)
map_html = folium_map._repr_html_()
# return image, future_df[['date', 'occupied']],map_html
return image,forecasted_rns,forecasted_revenue,map_html
model_df.columns
demo = gr.Interface(
fn=forecast_by_property,
inputs=[
gr.Dropdown(
choices=property_options,
label="Select Property",
info="Choose from the list of properties (searchable)",
interactive=True
),
gr.Number(
label="Average Daily Rate (ADR)",
info="Enter the expected ADR in your currency",
interactive=True
)
],
outputs=[
gr.Image(type="pil", label="Forecast Plot"),
gr.Number(label="Total Forecasted Room Nights", precision=0),
gr.Number(label="Total Forecasted Revenue", precision=0),
gr.HTML(label="Map")
],
title="Hotel Occupancy Segment Forecast",
description="Forecasts the next 30 days of occupancy for a selected hotel segment.",
flagging_mode='never'
)
if __name__ == "__main__":
demo.launch(share=True)
|