Spaces:
Runtime error
Runtime error
import os | |
import streamlit as st | |
import torch | |
import string | |
from transformers import BertTokenizer, BertForMaskedLM | |
st.set_page_config(page_title='Next Word Prediction Model', page_icon=None, layout='centered', initial_sidebar_state='auto') | |
def load_model(model_name): | |
try: | |
if model_name.lower() == "bert": | |
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
bert_model = BertForMaskedLM.from_pretrained('bert-base-uncased').eval() | |
return bert_tokenizer,bert_model | |
except Exception as e: | |
pass | |
#use joblib to fast your function | |
def decode(tokenizer, pred_idx, top_clean): | |
ignore_tokens = string.punctuation + '[PAD]' | |
tokens = [] | |
for w in pred_idx: | |
token = ''.join(tokenizer.decode(w).split()) | |
if token not in ignore_tokens: | |
tokens.append(token.replace('##', '')) | |
return '\n'.join(tokens[:top_clean]) | |
def encode(tokenizer, text_sentence, add_special_tokens=True): | |
text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token) | |
# if <mask> is the last token, append a "." so that models dont predict punctuation. | |
if tokenizer.mask_token == text_sentence.split()[-1]: | |
text_sentence += ' .' | |
input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)]) | |
mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0] | |
return input_ids, mask_idx | |
def get_all_predictions(text_sentence, top_clean=5): | |
# ========================= BERT ================================= | |
input_ids, mask_idx = encode(bert_tokenizer, text_sentence) | |
with torch.no_grad(): | |
predict = bert_model(input_ids)[0] | |
bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean) | |
return {'bert': bert} | |
def get_prediction_eos(input_text): | |
try: | |
input_text += ' <mask>' | |
res = get_all_predictions(input_text, top_clean=int(top_k)) | |
return res | |
except Exception as error: | |
pass | |
try: | |
st.markdown("<h1 style='text-align: center;'>Next Word Prediction</h1>", unsafe_allow_html=True) | |
st.markdown("<h4 style='text-align: center; color: #B2BEB5;'><i>Keywords : BertTokenizer, BertForMaskedLM, Pytorch</i></h4>", unsafe_allow_html=True) | |
st.sidebar.text("Next Word Prediction Model") | |
top_k = st.sidebar.slider("Select How many words do you need", 1 , 25, 1) #some times it is possible to have less words | |
print(top_k) | |
model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['BERT', 'XLNET'], index=0, key = "model_name") | |
bert_tokenizer, bert_model = load_model(model_name) | |
input_text = st.text_area("Enter your text here") | |
#click outside box of input text to get result | |
res = get_prediction_eos(input_text) | |
answer = [] | |
print(res['bert'].split("\n")) | |
for i in res['bert'].split("\n"): | |
answer.append(i) | |
answer_as_string = " ".join(answer) | |
st.text_area("Predicted List is Here",answer_as_string,key="predicted_list") | |
st.image('https://freepngimg.com/download/keyboard/6-2-keyboard-png-file.png',use_column_width=True) | |
st.markdown("<h6 style='text-align: center; color: #808080;'>Created By <a href='https://github.com/7Vivek'>Vivek</a> - Checkout complete project <a href='https://github.com/7Vivek/Next-Word-Prediction-Streamlit'>here</a></h6>", unsafe_allow_html=True) | |
except Exception as e: | |
print("SOME PROBLEM OCCURED") | |