7Vivek commited on
Commit
df6828f
·
1 Parent(s): b5293e7

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import torch
4
+ import string
5
+ from transformers import BertTokenizer, BertForMaskedLM
6
+
7
+ st.set_page_config(page_title='Next Word Prediction Model', page_icon=None, layout='centered', initial_sidebar_state='auto')
8
+
9
+ @st.cache()
10
+ def load_model(model_name):
11
+ try:
12
+ if model_name.lower() == "bert":
13
+ bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
14
+ bert_model = BertForMaskedLM.from_pretrained('bert-base-uncased').eval()
15
+ return bert_tokenizer,bert_model
16
+ except Exception as e:
17
+ pass
18
+
19
+ #use joblib to fast your function
20
+
21
+ def decode(tokenizer, pred_idx, top_clean):
22
+ ignore_tokens = string.punctuation + '[PAD]'
23
+ tokens = []
24
+ for w in pred_idx:
25
+ token = ''.join(tokenizer.decode(w).split())
26
+ if token not in ignore_tokens:
27
+ tokens.append(token.replace('##', ''))
28
+ return '\n'.join(tokens[:top_clean])
29
+
30
+ def encode(tokenizer, text_sentence, add_special_tokens=True):
31
+ text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
32
+ # if <mask> is the last token, append a "." so that models dont predict punctuation.
33
+ if tokenizer.mask_token == text_sentence.split()[-1]:
34
+ text_sentence += ' .'
35
+
36
+ input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
37
+ mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
38
+ return input_ids, mask_idx
39
+
40
+ def get_all_predictions(text_sentence, top_clean=5):
41
+ # ========================= BERT =================================
42
+ input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
43
+ with torch.no_grad():
44
+ predict = bert_model(input_ids)[0]
45
+ bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
46
+ return {'bert': bert}
47
+
48
+ def get_prediction_eos(input_text):
49
+ try:
50
+ input_text += ' <mask>'
51
+ res = get_all_predictions(input_text, top_clean=int(top_k))
52
+ return res
53
+ except Exception as error:
54
+ pass
55
+
56
+ try:
57
+
58
+ st.markdown("<h1 style='text-align: center;'>Next Word Prediction</h1>", unsafe_allow_html=True)
59
+ st.markdown("<h4 style='text-align: center; color: #B2BEB5;'><i>Keywords : BertTokenizer, BertForMaskedLM, Pytorch</i></h4>", unsafe_allow_html=True)
60
+
61
+ st.sidebar.text("Next Word Prediction Model")
62
+ top_k = st.sidebar.slider("Select How many words do you need", 1 , 25, 1) #some times it is possible to have less words
63
+ print(top_k)
64
+ model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['BERT', 'XLNET'], index=0, key = "model_name")
65
+
66
+ bert_tokenizer, bert_model = load_model(model_name)
67
+ input_text = st.text_area("Enter your text here")
68
+
69
+ #click outside box of input text to get result
70
+ res = get_prediction_eos(input_text)
71
+
72
+ answer = []
73
+ print(res['bert'].split("\n"))
74
+ for i in res['bert'].split("\n"):
75
+ answer.append(i)
76
+ answer_as_string = " ".join(answer)
77
+ st.text_area("Predicted List is Here",answer_as_string,key="predicted_list")
78
+ st.image('https://freepngimg.com/download/keyboard/6-2-keyboard-png-file.png',use_column_width=True)
79
+ st.markdown("<h6 style='text-align: center; color: #808080;'>Created By <a href='https://github.com/7Vivek'>Vivek</a> - Checkout complete project <a href='https://github.com/7Vivek/Next-Word-Prediction-Streamlit'>here</a></h6>", unsafe_allow_html=True)
80
+
81
+ except Exception as e:
82
+ print("SOME PROBLEM OCCURED")
83
+