import os import streamlit as st import torch import string from transformers import BertTokenizer, BertForMaskedLM st.set_page_config(page_title='Next Word Prediction Model', page_icon=None, layout='centered', initial_sidebar_state='auto') @st.cache() def load_model(model_name): try: if model_name.lower() == "bert": bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') bert_model = BertForMaskedLM.from_pretrained('bert-base-uncased').eval() return bert_tokenizer,bert_model except Exception as e: pass #use joblib to fast your function def decode(tokenizer, pred_idx, top_clean): ignore_tokens = string.punctuation + '[PAD]' tokens = [] for w in pred_idx: token = ''.join(tokenizer.decode(w).split()) if token not in ignore_tokens: tokens.append(token.replace('##', '')) return '\n'.join(tokens[:top_clean]) def encode(tokenizer, text_sentence, add_special_tokens=True): text_sentence = text_sentence.replace('', tokenizer.mask_token) # if is the last token, append a "." so that models dont predict punctuation. if tokenizer.mask_token == text_sentence.split()[-1]: text_sentence += ' .' input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)]) mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0] return input_ids, mask_idx def get_all_predictions(text_sentence, top_clean=5): # ========================= BERT ================================= input_ids, mask_idx = encode(bert_tokenizer, text_sentence) with torch.no_grad(): predict = bert_model(input_ids)[0] bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean) return {'bert': bert} def get_prediction_eos(input_text): try: input_text += ' ' res = get_all_predictions(input_text, top_clean=int(top_k)) return res except Exception as error: pass try: st.markdown("

Next Word Prediction

", unsafe_allow_html=True) st.markdown("

Keywords : BertTokenizer, BertForMaskedLM, Pytorch

", unsafe_allow_html=True) st.sidebar.text("Next Word Prediction Model") top_k = st.sidebar.slider("Select How many words do you need", 1 , 25, 1) #some times it is possible to have less words print(top_k) model_name = st.sidebar.selectbox(label='Select Model to Apply', options=['BERT', 'XLNET'], index=0, key = "model_name") bert_tokenizer, bert_model = load_model(model_name) input_text = st.text_area("Enter your text here") #click outside box of input text to get result res = get_prediction_eos(input_text) answer = [] print(res['bert'].split("\n")) for i in res['bert'].split("\n"): answer.append(i) answer_as_string = " ".join(answer) st.text_area("Predicted List is Here",answer_as_string,key="predicted_list") st.image('https://freepngimg.com/download/keyboard/6-2-keyboard-png-file.png',use_column_width=True) st.markdown("
Created By Vivek - Checkout complete project here
", unsafe_allow_html=True) except Exception as e: print("SOME PROBLEM OCCURED")