Spaces:
Running
Running
File size: 1,519 Bytes
bd78b3e 4aa52a5 bd78b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
import gradio as gr
from PIL import Image
os.system(
'wget https://github.com/FanChiMao/SUNet/releases/download/0.0/AWGN_denoising_SUNet.pth -P experiments/pretrained_models')
def inference(img):
os.system('mkdir test')
#basewidth = 512
#wpercent = (basewidth / float(img.size[0]))
#hsize = int((float(img.size[1]) * float(wpercent)))
#img = img.resize((basewidth, hsize), Image.ANTIALIAS)
img.save("test/1.png", "PNG")
os.system(
'python main_test_SUNet.py --input_dir test --weights experiments/pretrained_models/AWGN_denoising_SUNet.pth')
return 'result/1.png'
title = "SUNet: Swin Transformer with UNet for Image Denoising"
description = "Gradio demo for SUNet. SUNet has competitive performance results in terms of quantitative metrics and visual quality. See the paper and project page for detailed results below. Here, we provide a demo for AWGN image denoising. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co/akhaliq"
article = "<p style='text-align: center'><a href='https://' target='_blank'>Selective Residual M-Net</a> | <a href='https://github.com/FanChiMao/SRMNet' target='_blank'>Github Repo</a></p>"
examples = [['butterfly.png']]
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=examples
).launch(debug=True) |