Spaces:
Runtime error
Runtime error
File size: 1,619 Bytes
d430426 f7c89d9 d430426 c323f83 d430426 c61cfd1 38229db d430426 f573f7f 3b59ff7 d430426 d020d23 b590d0e a29a552 d430426 00449e7 d430426 aba8da1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
import gradio as gr
from PIL import Image
os.system(
'wget https://github.com/TentativeGitHub/SRMNet/releases/download/0.0/real_denoising_SRMNet.pth -P experiments/pretrained_models')
def inference(img):
os.system('mkdir test')
#basewidth = 256
#wpercent = (basewidth / float(img.size[0]))
#hsize = int((float(img.size[1]) * float(wpercent)))
#img = img.resize((basewidth, hsize), Image.ANTIALIAS)
img.save("test/1.png", "PNG")
os.system(
'python main_test_SRMNet.py --input_dir test --weights experiments/pretrained_models/real_denoising_SRMNet.pth')
return 'result/1.png'
title = "Selective Residual M-Net for Real-world Image Denoising"
description = "Gradio demo for SRMNet. SRMNet has competitive performance results on two synthetic and two realworld noisy datasets in terms of quantitative metrics and visual quality. See the paper and project page for detailed results below. Here, we provide a demo for real-world image denoising. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co/akhaliq"
article = "<p style='text-align: center'><a href='https://' target='_blank'>Selective Residual M-Net</a> | <a href='https://github.com/FanChiMao/SRMNet' target='_blank'>Github Repo</a></p>"
examples = [['Noise.png']]
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=examples
).launch(debug=True) |