File size: 9,815 Bytes
a4b2b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
from model.block import SAB, CAB, PAB, conv, SAM, conv3x3, conv_down

##########################################################################
## U-Net
bn = 2  # block number-1

class Encoder(nn.Module):
    def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats, block):
        super(Encoder, self).__init__()
        if block == 'CAB':
            self.encoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level2 = [CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level3 = [CAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        elif block == 'PAB':
            self.encoder_level1 = [PAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level2 = [PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level3 = [PAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        elif block == 'SAB':
            self.encoder_level1 = [SAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level2 = [SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.encoder_level3 = [SAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        self.encoder_level1 = nn.Sequential(*self.encoder_level1)
        self.encoder_level2 = nn.Sequential(*self.encoder_level2)
        self.encoder_level3 = nn.Sequential(*self.encoder_level3)
        self.down12 = DownSample(n_feat, scale_unetfeats)
        self.down23 = DownSample(n_feat + scale_unetfeats, scale_unetfeats)

    def forward(self, x):
        enc1 = self.encoder_level1(x)
        x = self.down12(enc1)
        enc2 = self.encoder_level2(x)
        x = self.down23(enc2)
        enc3 = self.encoder_level3(x)
        return [enc1, enc2, enc3]

class Decoder(nn.Module):
    def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats, block):
        super(Decoder, self).__init__()
        if block == 'CAB':
            self.decoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level2 = [CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level3 = [CAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        elif block == 'PAB':
            self.decoder_level1 = [PAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level2 = [PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level3 = [PAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        elif block == 'SAB':
            self.decoder_level1 = [SAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level2 = [SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
            self.decoder_level3 = [SAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
        self.decoder_level1 = nn.Sequential(*self.decoder_level1)
        self.decoder_level2 = nn.Sequential(*self.decoder_level2)
        self.decoder_level3 = nn.Sequential(*self.decoder_level3)
        if block == 'CAB':
            self.skip_attn1 = CAB(n_feat, kernel_size, reduction, bias=bias, act=act)
            self.skip_attn2 = CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
        if block == 'PAB':
            self.skip_attn1 = PAB(n_feat, kernel_size, reduction, bias=bias, act=act)
            self.skip_attn2 = PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
        if block == 'SAB':
            self.skip_attn1 = SAB(n_feat, kernel_size, reduction, bias=bias, act=act)
            self.skip_attn2 = SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
        self.up21 = SkipUpSample(n_feat, scale_unetfeats)
        self.up32 = SkipUpSample(n_feat + scale_unetfeats, scale_unetfeats)

    def forward(self, outs):
        enc1, enc2, enc3 = outs
        dec3 = self.decoder_level3(enc3)
        x = self.up32(dec3, self.skip_attn2(enc2))
        dec2 = self.decoder_level2(x)
        x = self.up21(dec2, self.skip_attn1(enc1))
        dec1 = self.decoder_level1(x)
        return [dec1, dec2, dec3]

##########################################################################
##---------- Resizing Modules ----------
class DownSample(nn.Module):
    def __init__(self, in_channels, s_factor):
        super(DownSample, self).__init__()
        self.down = nn.Sequential(nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
                                  nn.Conv2d(in_channels, in_channels + s_factor, 1, stride=1, padding=0, bias=False))

    def forward(self, x):
        x = self.down(x)
        return x

class UpSample(nn.Module):
    def __init__(self, in_channels, s_factor):
        super(UpSample, self).__init__()
        self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                                nn.Conv2d(in_channels + s_factor, in_channels, 1, stride=1, padding=0, bias=False))

    def forward(self, x):
        x = self.up(x)
        return x

class SkipUpSample(nn.Module):
    def __init__(self, in_channels, s_factor):
        super(SkipUpSample, self).__init__()
        self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                                nn.Conv2d(in_channels + s_factor, in_channels, 1, stride=1, padding=0, bias=False))

    def forward(self, x, y):
        x = self.up(x)
        x = x + y
        return x

##########################################################################
# Mixed Residual Module
class Mix(nn.Module):
    def __init__(self, m=1):
        super(Mix, self).__init__()
        w = nn.Parameter(torch.FloatTensor([m]), requires_grad=True)
        w = nn.Parameter(w, requires_grad=True)
        self.w = w
        self.mix_block = nn.Sigmoid()

    def forward(self, fea1, fea2, feat3):
        factor = self.mix_block(self.w)
        other = (1 - factor)/2
        output = fea1 * other.expand_as(fea1) + fea2 * factor.expand_as(fea2) + feat3 * other.expand_as(feat3)
        return output, factor

##########################################################################
# Architecture
class CMFNet(nn.Module):
    def __init__(self, in_c=3, out_c=3, n_feat=96, scale_unetfeats=48, kernel_size=3, reduction=4, bias=False):
        super(CMFNet, self).__init__()

        p_act = nn.PReLU()
        self.shallow_feat1 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
                                           conv(n_feat // 2, n_feat, kernel_size, bias=bias))
        self.shallow_feat2 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
                                           conv(n_feat // 2, n_feat, kernel_size, bias=bias))
        self.shallow_feat3 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
                                           conv(n_feat // 2, n_feat, kernel_size, bias=bias))

        self.stage1_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'CAB')
        self.stage1_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'CAB')

        self.stage2_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'PAB')
        self.stage2_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'PAB')

        self.stage3_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'SAB')
        self.stage3_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'SAB')

        self.sam1o = SAM(n_feat, kernel_size=3, bias=bias)
        self.sam2o = SAM(n_feat, kernel_size=3, bias=bias)
        self.sam3o = SAM(n_feat, kernel_size=3, bias=bias)

        self.mix = Mix(1)
        self.add123 = conv(out_c, out_c, kernel_size, bias=bias)
        self.concat123 = conv(n_feat*3, n_feat, kernel_size, bias=bias)
        self.tail = conv(n_feat, out_c, kernel_size, bias=bias)


    def forward(self, x):
        ## Compute Shallow Features
        shallow1 = self.shallow_feat1(x)
        shallow2 = self.shallow_feat2(x)
        shallow3 = self.shallow_feat3(x)

        ## Enter the UNet-CAB
        x1 = self.stage1_encoder(shallow1)
        x1_D = self.stage1_decoder(x1)
        ## Apply SAM
        x1_out, x1_img = self.sam1o(x1_D[0], x)

        ## Enter the UNet-PAB
        x2 = self.stage2_encoder(shallow2)
        x2_D = self.stage2_decoder(x2)
        ## Apply SAM
        x2_out, x2_img = self.sam2o(x2_D[0], x)

        ## Enter the UNet-SAB
        x3 = self.stage3_encoder(shallow3)
        x3_D = self.stage3_decoder(x3)
        ## Apply SAM
        x3_out, x3_img = self.sam3o(x3_D[0], x)

        ## Aggregate SAM features of Stage 1, Stage 2 and Stage 3
        mix_r = self.mix(x1_img, x2_img, x3_img)
        mixed_img = self.add123(mix_r[0])

        ## Concat SAM features of Stage 1, Stage 2 and Stage 3
        concat_feat = self.concat123(torch.cat([x1_out, x2_out, x3_out], 1))
        x_final = self.tail(concat_feat)

        return x_final + mixed_img