Spaces:
Running
Running
File size: 9,815 Bytes
0ad3230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import torch.nn as nn
from model.block import SAB, CAB, PAB, conv, SAM, conv3x3, conv_down
##########################################################################
## U-Net
bn = 2 # block number-1
class Encoder(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats, block):
super(Encoder, self).__init__()
if block == 'CAB':
self.encoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level2 = [CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level3 = [CAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
elif block == 'PAB':
self.encoder_level1 = [PAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level2 = [PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level3 = [PAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
elif block == 'SAB':
self.encoder_level1 = [SAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level2 = [SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level3 = [SAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.encoder_level1 = nn.Sequential(*self.encoder_level1)
self.encoder_level2 = nn.Sequential(*self.encoder_level2)
self.encoder_level3 = nn.Sequential(*self.encoder_level3)
self.down12 = DownSample(n_feat, scale_unetfeats)
self.down23 = DownSample(n_feat + scale_unetfeats, scale_unetfeats)
def forward(self, x):
enc1 = self.encoder_level1(x)
x = self.down12(enc1)
enc2 = self.encoder_level2(x)
x = self.down23(enc2)
enc3 = self.encoder_level3(x)
return [enc1, enc2, enc3]
class Decoder(nn.Module):
def __init__(self, n_feat, kernel_size, reduction, act, bias, scale_unetfeats, block):
super(Decoder, self).__init__()
if block == 'CAB':
self.decoder_level1 = [CAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level2 = [CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level3 = [CAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
elif block == 'PAB':
self.decoder_level1 = [PAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level2 = [PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level3 = [PAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
elif block == 'SAB':
self.decoder_level1 = [SAB(n_feat, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level2 = [SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level3 = [SAB(n_feat + (scale_unetfeats * 2), kernel_size, reduction, bias=bias, act=act) for _ in range(bn)]
self.decoder_level1 = nn.Sequential(*self.decoder_level1)
self.decoder_level2 = nn.Sequential(*self.decoder_level2)
self.decoder_level3 = nn.Sequential(*self.decoder_level3)
if block == 'CAB':
self.skip_attn1 = CAB(n_feat, kernel_size, reduction, bias=bias, act=act)
self.skip_attn2 = CAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
if block == 'PAB':
self.skip_attn1 = PAB(n_feat, kernel_size, reduction, bias=bias, act=act)
self.skip_attn2 = PAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
if block == 'SAB':
self.skip_attn1 = SAB(n_feat, kernel_size, reduction, bias=bias, act=act)
self.skip_attn2 = SAB(n_feat + scale_unetfeats, kernel_size, reduction, bias=bias, act=act)
self.up21 = SkipUpSample(n_feat, scale_unetfeats)
self.up32 = SkipUpSample(n_feat + scale_unetfeats, scale_unetfeats)
def forward(self, outs):
enc1, enc2, enc3 = outs
dec3 = self.decoder_level3(enc3)
x = self.up32(dec3, self.skip_attn2(enc2))
dec2 = self.decoder_level2(x)
x = self.up21(dec2, self.skip_attn1(enc1))
dec1 = self.decoder_level1(x)
return [dec1, dec2, dec3]
##########################################################################
##---------- Resizing Modules ----------
class DownSample(nn.Module):
def __init__(self, in_channels, s_factor):
super(DownSample, self).__init__()
self.down = nn.Sequential(nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels, in_channels + s_factor, 1, stride=1, padding=0, bias=False))
def forward(self, x):
x = self.down(x)
return x
class UpSample(nn.Module):
def __init__(self, in_channels, s_factor):
super(UpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels + s_factor, in_channels, 1, stride=1, padding=0, bias=False))
def forward(self, x):
x = self.up(x)
return x
class SkipUpSample(nn.Module):
def __init__(self, in_channels, s_factor):
super(SkipUpSample, self).__init__()
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(in_channels + s_factor, in_channels, 1, stride=1, padding=0, bias=False))
def forward(self, x, y):
x = self.up(x)
x = x + y
return x
##########################################################################
# Mixed Residual Module
class Mix(nn.Module):
def __init__(self, m=1):
super(Mix, self).__init__()
w = nn.Parameter(torch.FloatTensor([m]), requires_grad=True)
w = nn.Parameter(w, requires_grad=True)
self.w = w
self.mix_block = nn.Sigmoid()
def forward(self, fea1, fea2, feat3):
factor = self.mix_block(self.w)
other = (1 - factor)/2
output = fea1 * other.expand_as(fea1) + fea2 * factor.expand_as(fea2) + feat3 * other.expand_as(feat3)
return output, factor
##########################################################################
# Architecture
class CMFNet(nn.Module):
def __init__(self, in_c=3, out_c=3, n_feat=96, scale_unetfeats=48, kernel_size=3, reduction=4, bias=False):
super(CMFNet, self).__init__()
p_act = nn.PReLU()
self.shallow_feat1 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
conv(n_feat // 2, n_feat, kernel_size, bias=bias))
self.shallow_feat2 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
conv(n_feat // 2, n_feat, kernel_size, bias=bias))
self.shallow_feat3 = nn.Sequential(conv(in_c, n_feat // 2, kernel_size, bias=bias), p_act,
conv(n_feat // 2, n_feat, kernel_size, bias=bias))
self.stage1_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'CAB')
self.stage1_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'CAB')
self.stage2_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'PAB')
self.stage2_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'PAB')
self.stage3_encoder = Encoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'SAB')
self.stage3_decoder = Decoder(n_feat, kernel_size, reduction, p_act, bias, scale_unetfeats, 'SAB')
self.sam1o = SAM(n_feat, kernel_size=3, bias=bias)
self.sam2o = SAM(n_feat, kernel_size=3, bias=bias)
self.sam3o = SAM(n_feat, kernel_size=3, bias=bias)
self.mix = Mix(1)
self.add123 = conv(out_c, out_c, kernel_size, bias=bias)
self.concat123 = conv(n_feat*3, n_feat, kernel_size, bias=bias)
self.tail = conv(n_feat, out_c, kernel_size, bias=bias)
def forward(self, x):
## Compute Shallow Features
shallow1 = self.shallow_feat1(x)
shallow2 = self.shallow_feat2(x)
shallow3 = self.shallow_feat3(x)
## Enter the UNet-CAB
x1 = self.stage1_encoder(shallow1)
x1_D = self.stage1_decoder(x1)
## Apply SAM
x1_out, x1_img = self.sam1o(x1_D[0], x)
## Enter the UNet-PAB
x2 = self.stage2_encoder(shallow2)
x2_D = self.stage2_decoder(x2)
## Apply SAM
x2_out, x2_img = self.sam2o(x2_D[0], x)
## Enter the UNet-SAB
x3 = self.stage3_encoder(shallow3)
x3_D = self.stage3_decoder(x3)
## Apply SAM
x3_out, x3_img = self.sam3o(x3_D[0], x)
## Aggregate SAM features of Stage 1, Stage 2 and Stage 3
mix_r = self.mix(x1_img, x2_img, x3_img)
mixed_img = self.add123(mix_r[0])
## Concat SAM features of Stage 1, Stage 2 and Stage 3
concat_feat = self.concat123(torch.cat([x1_out, x2_out, x3_out], 1))
x_final = self.tail(concat_feat)
return x_final + mixed_img |