File size: 6,191 Bytes
8242674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46be569
8242674
 
 
 
 
 
06f120f
8242674
 
46be569
8242674
 
 
 
 
 
 
 
 
 
 
 
6d0841b
8242674
e0a1f6f
6d0841b
8242674
6d0841b
 
 
 
 
 
 
 
 
 
 
 
4425514
6d0841b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8242674
6d0841b
 
8242674
daded6f
 
 
 
8242674
6d0841b
 
 
8242674
6d0841b
 
1acce7c
6d0841b
 
8242674
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }
    
    def generate(self, params):
        response = self._post(f"{self.base}/sd/generate", params)
        return response.json()
    
    def transform(self, params):
        response = self._post(f"{self.base}/sd/transform", params)
        return response.json()
    
    def controlnet(self, params):
        response = self._post(f"{self.base}/sd/controlnet", params)
        return response.json()
    
    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/models/list")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed
        
        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string



prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]

css = """
#generate {
    height: 100%;
}
"""

with gr.Blocks(css=css, theme="Base") as demo:


      
    with gr.Row():
        gr.Markdown("<h1><center>Stable Diffusion Demo</center></h1>")
    with gr.Tab("Playground"):
        with gr.Row():
            with gr.Column(scale=6, min_width=600):
                prompt = gr.Textbox(label="Prompt", placeholder="beautiful cat, 8k", show_label=True, lines=2)
                negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", placeholder="text, blurry, fuzziness", show_label=True, lines=3)
            with gr.Column():
                text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                
        with gr.Row():
            with gr.Column(scale=3):

                
            with gr.Column(scale=2):
                image_output = gr.Image()

                with gr.Accordion("Advanced options", open=False):
                    with gr.Row():
                        with gr.Column(scale=6):
                            model = gr.Dropdown(interactive=True,value="v1-5-pruned-emaonly.safetensors [d7049739]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())

                    
                    with gr.Row():
                        with gr.Column(scale=1):
                            sampler = gr.Dropdown(value="DPM++ SDE", show_label=True, label="Sampler", choices=[
                                "Euler",
                                "Euler a",
                                "LMS",
                                "Heun",
                                "DPM2",
                                "DPM2 a",
                                "DPM++ 2S a",
                                "DPM++ 2M",
                                "DPM++ SDE",
                                "DPM fast",
                                "DPM adaptive",
                                "LMS Karras",
                                "DPM2 Karras",
                                "DPM2 a Karras",
                                "DPM++ 2S a Karras",
                                "DPM++ 2M Karras",
                                "DPM++ SDE Karras",
                                "DDIM",
                                "PLMS",
                            ])
                            
                        with gr.Column(scale=1):
                            steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=30, step=1)

                    with gr.Row():
                        with gr.Column(scale=1):
                            width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
                            height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
                        
                        with gr.Column(scale=1):
                            batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                            batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)

                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                    seed = gr.Number(label="Seed", value=-1, info="""'-1' is random seed""")

        
        text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
    
demo.queue(concurrency_count=10)
demo.launch()