File size: 24,021 Bytes
5c48b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright (c) 2024-2025, The Alibaba 3DAIGC Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import sys
import base64
import subprocess
import gradio as gr
import numpy as np
from PIL import Image
import argparse
from omegaconf import OmegaConf
import torch
import zipfile
from glob import glob
import moviepy.editor as mpy
from tools.flame_tracking_single_image import FlameTrackingSingleImage
from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image
try:
import spaces
except:
pass
h5_rendering = True
from gradio_gaussian_render import gaussian_render
def launch_env_not_compile_with_cuda():
os.system('pip install chumpy')
os.system('pip install numpy==1.23.0')
os.system(
'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html'
)
def assert_input_image(input_image):
if input_image is None:
raise gr.Error('No image selected or uploaded!')
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from lam.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool,
working_dir):
image_raw = os.path.join(working_dir.name, 'raw.png')
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, 'rembg.png')
success = preprocessor.preprocess(image_path=image_raw,
save_path=image_out,
rmbg=remove_bg,
recenter=recenter)
assert success, f'Failed under preprocess_fn!'
return image_out
def get_image_base64(path):
with open(path, 'rb') as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f'data:image/png;base64,{encoded_string}'
def do_softlink(working_dir, tgt_dir="./runtime_data"):
os.system(f"rm {tgt_dir}")
cmd = f"ln -s {working_dir} ./runtime_data"
os.system(cmd)
return cmd
def doRender(working_dir):
working_dir = working_dir.name
cmd = do_softlink(working_dir)
print('='*100, "\n"+cmd, '\ndo render', "\n"+"="*100)
def save_images2video(img_lst, v_pth, fps):
from moviepy.editor import ImageSequenceClip
# Ensure all images are in uint8 format
images = [image.astype(np.uint8) for image in img_lst]
# Create an ImageSequenceClip from the list of images
clip = ImageSequenceClip(images, fps=fps)
# Write the clip to a video file
clip.write_videofile(v_pth, codec='libx264')
print(f"Video saved successfully at {v_pth}")
def add_audio_to_video(video_path, out_path, audio_path, fps=30):
# Import necessary modules from moviepy
from moviepy.editor import VideoFileClip, AudioFileClip
# Load video file into VideoFileClip object
video_clip = VideoFileClip(video_path)
# Load audio file into AudioFileClip object
audio_clip = AudioFileClip(audio_path)
# Hard code clip audio
"""
if audio_clip.duration > 10:
audio_clip = audio_clip.subclip(0, 10)
"""
# Attach audio clip to video clip (replaces existing audio)
video_clip_with_audio = video_clip.set_audio(audio_clip)
# Export final video with audio using standard codecs
video_clip_with_audio.write_videofile(out_path, codec='libx264', audio_codec='aac', fps=fps)
print(f"Audio added successfully at {out_path}")
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument("--infer", type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get("APP_INFER") is not None:
args.infer = os.environ.get("APP_INFER")
if os.environ.get("APP_MODEL_NAME") is not None:
cli_cfg.model_name = os.environ.get("APP_MODEL_NAME")
args.config = args.infer if args.config is None else args.config
if args.config is not None:
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
try:
cfg.src_head_size = cfg_train.dataset.src_head_size
except:
cfg.src_head_size = 112
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(
cfg_train.experiment.parent,
cfg_train.experiment.child,
os.path.basename(cli_cfg.model_name).split("_")[-1],
)
cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path)
cfg.image_dump = os.path.join("exps", "images", _relative_path)
cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
cfg.setdefault(
"save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp")
)
cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images"))
cfg.setdefault(
"video_dump", os.path.join("dumps", cli_cfg.model_name, "videos")
)
cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes"))
cfg.motion_video_read_fps = 30
cfg.merge_with(cli_cfg)
cfg.setdefault("logger", "INFO")
assert cfg.model_name is not None, "model_name is required"
return cfg, cfg_train
def create_zip_archive(output_zip='runtime_data/h5_render_data.zip', base_vid="nice", in_fd="./runtime_data"):
flame_params_pth = os.path.join("./assets/sample_motion/export", base_vid, "flame_params.json")
file_lst = [
f'{in_fd}/lbs_weight_20k.json', f'{in_fd}/offset.ply', f'{in_fd}/skin.glb',
f'{in_fd}/vertex_order.json', f'{in_fd}/bone_tree.json',
flame_params_pth
]
try:
# Create a new ZIP file in write mode
with zipfile.ZipFile(output_zip, 'w') as zipf:
# List all files in the specified directory
for file_path in file_lst:
zipf.write(file_path, arcname=os.path.join("h5_render_data", os.path.basename(file_path)))
print(f"Archive created successfully: {output_zip}")
except Exception as e:
print(f"An error occurred: {e}")
def demo_lam(flametracking, lam, cfg):
# @spaces.GPU(duration=80)
def core_fn(image_path: str, video_params, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.open(image_path).convert('RGB') as img:
img.save(image_raw)
base_vid = os.path.basename(video_params).split(".")[0]
flame_params_dir = os.path.join("./assets/sample_motion/export", base_vid, "flame_param")
base_iid = os.path.basename(image_path).split('.')[0]
image_path = os.path.join("./assets/sample_input", base_iid, "images/00000_00.png")
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_image_path = os.path.join(working_dir.name, "output.png")
# prepare dump paths
omit_prefix = os.path.dirname(image_raw)
image_name = os.path.basename(image_raw)
uid = image_name.split(".")[0]
subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "")
subdir_path = (
subdir_path[1:] if subdir_path.startswith("/") else subdir_path
)
print("subdir_path and uid:", subdir_path, uid)
motion_seqs_dir = flame_params_dir
dump_image_dir = os.path.dirname(dump_image_path)
os.makedirs(dump_image_dir, exist_ok=True)
print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path)
dump_tmp_dir = dump_image_dir
if os.path.exists(dump_video_path):
return dump_image_path, dump_video_path
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False
vis_motion = cfg.get("vis_motion", False) # False
# preprocess input image: segmentation, flame params estimation
return_code = flametracking.preprocess(image_raw)
assert (return_code == 0), "flametracking preprocess failed!"
return_code = flametracking.optimize()
assert (return_code == 0), "flametracking optimize failed!"
return_code, output_dir = flametracking.export()
assert (return_code == 0), "flametracking export failed!"
image_path = os.path.join(output_dir, "images/00000_00.png")
mask_path = os.path.join(output_dir, "fg_masks/00000_00.png")
print("image_path:", image_path, "\n"+"mask_path:", mask_path)
aspect_standard = 1.0/1.0
source_size = cfg.source_size
render_size = cfg.render_size
render_fps = 30
# prepare reference image
image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=1.,
max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True)
# save masked image for vis
save_ref_img_path = os.path.join(dump_tmp_dir, "output.png")
vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(np.uint8)
Image.fromarray(vis_ref_img).save(save_ref_img_path)
# prepare motion seq
src = image_path.split('/')[-3]
driven = motion_seqs_dir.split('/')[-2]
src_driven = [src, driven]
motion_seq = prepare_motion_seqs(motion_seqs_dir, None, save_root=dump_tmp_dir, fps=render_fps,
bg_color=1., aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
render_image_res=render_size, multiply=16,
need_mask=motion_img_need_mask, vis_motion=vis_motion,
shape_param=shape_param, test_sample=False, cross_id=False, src_driven=src_driven)
# start inference
motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0)
device, dtype = "cuda", torch.float32
print("start to inference...................")
with torch.no_grad():
# TODO check device and dtype
res = lam.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None,
render_c2ws=motion_seq["render_c2ws"].to(device),
render_intrs=motion_seq["render_intrs"].to(device),
render_bg_colors=motion_seq["render_bg_colors"].to(device),
flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()})
# save h5 rendering info
if h5_rendering:
res['cano_gs_lst'][0].save_ply(os.path.join(working_dir.name, "offset.ply"), rgb2sh=False, offset2xyz=True)
h5_fd = working_dir.name
lam.renderer.flame_model.save_h5_info(shape_param.unsqueeze(0).cuda(), fd=h5_fd)
res['cano_gs_lst'][0].save_ply(os.path.join(h5_fd, "offset.ply"), rgb2sh=False, offset2xyz=True)
cmd = do_softlink(h5_fd)
cmd = "thirdparties/blender/blender --background --python 'tools/generateGLBWithBlender_v2.py'"
os.system(cmd)
output_zip = os.path.join(h5_fd, "h5_render_data.zip")
create_zip_archive(output_zip=output_zip, base_vid=base_vid, in_fd=h5_fd)
rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
mask = res["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1
mask[mask < 0.5] = 0.0
rgb = rgb * mask + (1 - mask) * 1
rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8)
if vis_motion:
vis_ref_img = np.tile(
cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :],
(rgb.shape[0], 1, 1, 1),
)
rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2)
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
save_images2video(rgb, dump_video_path, render_fps)
audio_path = os.path.join("./assets/sample_motion/export", base_vid, base_vid+".wav")
dump_video_path_wa = dump_video_path.replace(".mp4", "_audio.mp4")
add_audio_to_video(dump_video_path, dump_video_path_wa, audio_path)
return dump_image_path, dump_video_path_wa
with gr.Blocks(analytics_enabled=False) as demo:
logo_url = './assets/images/logo.jpeg'
logo_base64 = get_image_base64(logo_url)
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Avatar Model for One-shot Animatable Gaussian Head</h1>
</div>
</div>
""")
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;">
<a class="flex-item" href="https://arxiv.org/abs/2502.17796" target="_blank">
<img src="https://img.shields.io/badge/Paper-arXiv-darkred.svg" alt="arXiv Paper">
</a>
<a class="flex-item" href="https://aigc3d.github.io/projects/LAM/" target="_blank">
<img src="https://img.shields.io/badge/Project-LAM-blue" alt="Project Page">
</a>
<a class="flex-item" href="https://github.com/aigc3d/LAM" target="_blank">
<img src="https://img.shields.io/github/stars/aigc3d/LAM?label=Github%20★&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a class="flex-item" href="https://youtu.be/FrfE3RYSKhk" target="_blank">
<img src="https://img.shields.io/badge/Youtube-Video-red.svg" alt="Video">
</a>
</div>
"""
)
gr.HTML("""<div style="margin-top: -10px">
<p style="margin: 4px 0; line-height: 1.2"><h4 style="color: red; margin: 2px 0">Notes1: Inputing front-face images or face orientation close to the driven signal gets better results.</h4></p>
<p style="margin: 4px 0; line-height: 1.2"><h4 style="color: red; margin: 2px 0">Notes2: Due to computational constraints with Hugging Face's ZeroGPU infrastructure, video generation requires ~1 minute per instance.</h4></p>
<p style="margin: 4px 0; line-height: 1.2"><h4 style="color: red; margin: 2px 0">Notes3: Using LAM-20K model (lower quality than premium LAM-80K) to mitigate processing latency.</h4></p>
</div>""")
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_input_image'):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label='Input Image',
image_mode='RGB',
height=480,
width=270,
sources='upload',
type='filepath',
elem_id='content_image')
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/messi.png'],
['assets/sample_input/status.png'],
['assets/sample_input/james.png'],
['assets/sample_input/cluo.jpg'],
['assets/sample_input/dufu.jpg'],
['assets/sample_input/libai.jpg'],
['assets/sample_input/barbara.jpg'],
['assets/sample_input/pop.png'],
['assets/sample_input/musk.jpg'],
['assets/sample_input/speed.jpg'],
['assets/sample_input/zhouxingchi.jpg'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
examples_per_page=20
)
with gr.Column():
with gr.Tabs(elem_id='lam_input_video'):
with gr.TabItem('Input Video'):
with gr.Row():
video_input = gr.Video(label='Input Video',
height=480,
width=270,
interactive=False)
examples = ['./assets/sample_motion/export/Speeding_Scandal/Speeding_Scandal.mp4',
'./assets/sample_motion/export/Look_In_My_Eyes/Look_In_My_Eyes.mp4',
'./assets/sample_motion/export/D_ANgelo_Dinero/D_ANgelo_Dinero.mp4',
'./assets/sample_motion/export/Michael_Wayne_Rosen/Michael_Wayne_Rosen.mp4',
'./assets/sample_motion/export/I_Am_Iron_Man/I_Am_Iron_Man.mp4',
'./assets/sample_motion/export/Anti_Drugs/Anti_Drugs.mp4',
'./assets/sample_motion/export/Pen_Pineapple_Apple_Pen/Pen_Pineapple_Apple_Pen.mp4',
'./assets/sample_motion/export/Joe_Biden/Joe_Biden.mp4',
'./assets/sample_motion/export/Donald_Trump/Donald_Trump.mp4',
'./assets/sample_motion/export/Taylor_Swift/Taylor_Swift.mp4',
'./assets/sample_motion/export/GEM/GEM.mp4',
'./assets/sample_motion/export/The_Shawshank_Redemption/The_Shawshank_Redemption.mp4'
]
print("Video example list {}".format(examples))
gr.Examples(
examples=examples,
inputs=[video_input],
examples_per_page=20,
)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_processed_image'):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(
label='Processed Image',
image_mode='RGBA',
type='filepath',
elem_id='processed_image',
height=480,
width=270,
interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id='lam_render_video'):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label='Rendered Video',
format='mp4',
height=480,
width=270,
autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
submit = gr.Button('Generate',
elem_id='lam_generate',
variant='primary')
if h5_rendering:
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h2> Cross-platform H5 Rendering</h2>
</div>
</div>
""")
gr.set_static_paths("runtime_data/")
assetPrefix = 'gradio_api/file=runtime_data/'
with gr.Row():
gs = gaussian_render(width = 300, height = 400, assets = assetPrefix + 'h5_render_data.zip')
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=core_fn,
inputs=[input_image, video_input,
working_dir],
outputs=[processed_image, output_video],
).success(
doRender,
inputs=[working_dir],
js='''() => window.start()'''
)
demo.queue()
demo.launch()
def _build_model(cfg):
from lam.models import ModelLAM
from safetensors.torch import load_file
model = ModelLAM(**cfg.model)
resume = os.path.join(cfg.model_name, "model.safetensors")
print("="*100)
print("loading pretrained weight from:", resume)
if resume.endswith('safetensors'):
ckpt = load_file(resume, device='cpu')
else:
ckpt = torch.load(resume, map_location='cpu')
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
print(f"WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.")
else:
print(f"WARN] unexpected param {k}: {v.shape}")
print("finish loading pretrained weight from:", resume)
print("="*100)
return model
def launch_gradio_app():
os.environ.update({
'APP_ENABLED': '1',
'APP_MODEL_NAME':
'./model_zoo/lam_models/releases/lam/lam-20k/step_045500/',
'APP_INFER': './configs/inference/lam-20k-8gpu.yaml',
'APP_TYPE': 'infer.lam',
'NUMBA_THREADING_LAYER': 'omp',
})
cfg, _ = parse_configs()
lam = _build_model(cfg)
lam.to('cuda')
flametracking = FlameTrackingSingleImage(output_dir='tracking_output',
alignment_model_path='./model_zoo/flame_tracking_models/68_keypoints_model.pkl',
vgghead_model_path='./model_zoo/flame_tracking_models/vgghead/vgg_heads_l.trcd',
human_matting_path='./model_zoo/flame_tracking_models/matting/stylematte_synth.pt',
facebox_model_path='./model_zoo/flame_tracking_models/FaceBoxesV2.pth',
detect_iris_landmarks=True)
demo_lam(flametracking, lam, cfg)
if __name__ == '__main__':
# launch_env_not_compile_with_cuda()
launch_gradio_app()
|