File size: 4,786 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import sys
import cv2
import math
import copy
import torch
import itertools
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from scipy.optimize import linear_sum_assignment
from scipy.stats import linregress
from ellipse import LsqEllipse
from itertools import product
from functools import reduce
from utils.utils_field import _draw_field
from utils.utils_heatmap import generate_gaussian_array_vectorized_l
class LineKeypointsWCDB(object):
def __init__(self, image, homography, size_out=(960,540)):
self.lines_list = ["Big rect. left bottom",
"Big rect. left main",
"Big rect. left top",
"Big rect. right bottom",
"Big rect. right main",
"Big rect. right top",
"Goal left crossbar",
"Goal left post left ",
"Goal left post right",
"Goal right crossbar",
"Goal right post left",
"Goal right post right",
"Middle line",
"Side line bottom",
"Side line left",
"Side line right",
"Side line top",
"Small rect. left bottom",
"Small rect. left main",
"Small rect. left top",
"Small rect. right bottom",
"Small rect. right main",
"Small rect. right top"]
self.line_extremities = [[[0., 54.16], [16.5, 54.16]],
[[16.5, 13.84], [16.5, 54.16]],
[[0., 13.84], [16.5, 13.84]],
[[88.5, 54.16], [105., 54.16]],
[[88.5, 13.84], [88.5, 54.16]],
[[88.5, 13.84], [105., 13.84]],
[[], []],
[[], []],
[[], []],
[[], []],
[[], []],
[[], []],
[[52.5, 0.], [52.5, 68.]],
[[0., 68.], [105., 68.]],
[[0., 0.], [0., 68.]],
[[105., 0.], [105., 68.]],
[[0., 0.], [105., 0.]],
[[0., 43.16], [5.5, 43.16]],
[[5.5, 24.84], [5.5, 43.16]],
[[0., 24.84], [5.5, 24.84]],
[[99.5, 43.16], [105., 43.16]],
[[99.5, 24.84], [99.5, 43.16]],
[[99.5, 24.84], [105., 24.84]],]
self.homography = homography
self.image = image
self.w, self.h = size_out
self.size = (self.w, self.h)
self.h_extra = self.h * 0.5
self.w_extra = self.w * 0.5
self.lines = {}
self.num_channels = len(self.lines_list)
self.mask_array = np.ones(self.num_channels + 1).astype(int)
def get_tensor_w_mask(self):
self.get_lines()
for line in [7, 8, 9, 10, 11, 12]:
self.mask_array[line-1] = 0
heatmap_tensor = generate_gaussian_array_vectorized_l(self.num_channels, self.lines, self.size, down_ratio=2,
sigma=2)
return heatmap_tensor, self.mask_array
def get_lines(self):
for count, line in enumerate(self.line_extremities):
if len(line[0]) > 0:
p1_img = np.linalg.inv(self.homography) @ np.array([line[0][0], line[0][1], 1.])
p1_img /= p1_img[-1]
p2_img = np.linalg.inv(self.homography) @ np.array([line[1][0], line[1][1], 1.])
p2_img /= p2_img[-1]
p1_img[0] *= self.w / self.image.size[0]
p1_img[1] *= self.h / self.image.size[1]
p2_img[0] *= self.w / self.image.size[0]
p2_img[1] *= self.h / self.image.size[1]
flag, pt1, pt2 = cv2.clipLine((0, 0, self.w, self.h), (int(p1_img[0]), int(p1_img[1])), (int(p2_img[0]), int(p2_img[1])))
if flag:
self.lines[count+1] = {'x_1': pt1[0], 'y_1': pt1[1], 'x_2': pt2[0], 'y_2': pt2[1]}
|