File size: 15,788 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import argparse
import json
import sys
import os
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
from camera import Camera
from evaluate_extremities import scale_points, distance, mirror_labels
from soccerpitch import SoccerPitch
def get_polylines(camera_annotation, width, height, sampling_factor=0.2):
"""
Given a set of camera parameters, this function adapts the camera to the desired image resolution and then
projects the 3D points belonging to the terrain model in order to give a dictionary associating the classes
observed and the points projected in the image.
:param camera_annotation: camera parameters in their json/dictionary format
:param width: image width for evaluation
:param height: image height for evaluation
:return: a dictionary with keys corresponding to a class observed in the image ( a line of the 3D model whose
projection falls in the image) and values are then the list of 2D projected points.
"""
cam = Camera(width, height)
cam.from_json_parameters(camera_annotation)
field = SoccerPitch()
projections = dict()
sides = [
np.array([1, 0, 0]),
np.array([1, 0, -width + 1]),
np.array([0, 1, 0]),
np.array([0, 1, -height + 1])
]
for key, points in field.sample_field_points(sampling_factor).items():
projections_list = []
in_img = False
prev_proj = np.zeros(3)
for i, point in enumerate(points):
ext = cam.project_point(point)
if ext[2] < 1e-5:
# point at infinity or behind camera
continue
if 0 <= ext[0] < width and 0 <= ext[1] < height:
if not in_img and i > 0:
line = np.cross(ext, prev_proj)
in_img_intersections = []
dist_to_ext = []
for side in sides:
intersection = np.cross(line, side)
intersection /= intersection[2]
if 0 <= intersection[0] < width and 0 <= intersection[1] < height:
in_img_intersections.append(intersection)
dist_to_ext.append(np.sqrt(np.sum(np.square(intersection - ext))))
if in_img_intersections:
intersection = in_img_intersections[np.argmin(dist_to_ext)]
projections_list.append(
{
"x": intersection[0],
"y": intersection[1]
}
)
projections_list.append(
{
"x": ext[0],
"y": ext[1]
}
)
in_img = True
elif in_img:
# first point out
line = np.cross(ext, prev_proj)
in_img_intersections = []
dist_to_ext = []
for side in sides:
intersection = np.cross(line, side)
intersection /= intersection[2]
if 0 <= intersection[0] < width and 0 <= intersection[1] < height:
in_img_intersections.append(intersection)
dist_to_ext.append(np.sqrt(np.sum(np.square(intersection - ext))))
if in_img_intersections:
intersection = in_img_intersections[np.argmin(dist_to_ext)]
projections_list.append(
{
"x": intersection[0],
"y": intersection[1]
}
)
in_img = False
prev_proj = ext
if len(projections_list):
projections[key] = projections_list
return projections
def distance_to_polyline(point, polyline):
"""
Computes euclidian distance between a point and a polyline.
:param point: 2D point
:param polyline: a list of 2D point
:return: the distance value
"""
if 0 < len(polyline) < 2:
dist = distance(point, polyline[0])
return dist
else:
dist_to_segments = []
point_np = np.array([point["x"], point["y"], 1])
for i in range(len(polyline) - 1):
origin_segment = np.array([
polyline[i]["x"],
polyline[i]["y"],
1
])
end_segment = np.array([
polyline[i + 1]["x"],
polyline[i + 1]["y"],
1
])
line = np.cross(origin_segment, end_segment)
line /= np.sqrt(np.square(line[0]) + np.square(line[1]))
# project point on line l
projected = np.cross((np.cross(np.array([line[0], line[1], 0]), point_np)), line)
projected = projected / projected[2]
v1 = projected - origin_segment
v2 = end_segment - origin_segment
k = np.dot(v1, v2) / np.dot(v2, v2)
if 0 < k < 1:
segment_distance = np.sqrt(np.sum(np.square(projected - point_np)))
else:
d1 = distance(point, polyline[i])
d2 = distance(point, polyline[i + 1])
segment_distance = np.min([d1, d2])
dist_to_segments.append(segment_distance)
return np.min(dist_to_segments)
def evaluate_camera_prediction(projected_lines, groundtruth_lines, threshold):
"""
Computes confusion matrices for a level of precision specified by the threshold.
A groundtruth line is correctly classified if it lies at less than threshold pixels from a line of the prediction
of the same class.
Computes also the reprojection error of each groundtruth point : the reprojection error is the L2 distance between
the point and the projection of the line.
:param projected_lines: dictionary of detected lines classes as keys and associated predicted points as values
:param groundtruth_lines: dictionary of annotated lines classes as keys and associated annotated points as values
:param threshold: distance in pixels that distinguishes good matches from bad ones
:return: confusion matrix, per class confusion matrix & per class reprojection errors
"""
global_confusion_mat = np.zeros((2, 2), dtype=np.float32)
per_class_confusion = {}
dict_errors = {}
detected_classes = set(projected_lines.keys())
groundtruth_classes = set(groundtruth_lines.keys())
false_positives_classes = detected_classes - groundtruth_classes
for false_positive_class in false_positives_classes:
# false_positives = len(projected_lines[false_positive_class])
if "Circle" not in false_positive_class:
# Count only extremities for lines, independently of soccer pitch sampling
false_positives = 2.
else:
false_positives = 9.
per_class_confusion[false_positive_class] = np.array([[0., false_positives], [0., 0.]])
global_confusion_mat[0, 1] += 1
false_negatives_classes = groundtruth_classes - detected_classes
for false_negatives_class in false_negatives_classes:
false_negatives = len(groundtruth_lines[false_negatives_class])
per_class_confusion[false_negatives_class] = np.array([[0., 0.], [false_negatives, 0.]])
global_confusion_mat[1, 0] += 1
common_classes = detected_classes - false_positives_classes
for detected_class in common_classes:
detected_points = projected_lines[detected_class]
groundtruth_points = groundtruth_lines[detected_class]
per_class_confusion[detected_class] = np.zeros((2, 2))
all_below_dist = 1
for point in groundtruth_points:
dist_to_poly = distance_to_polyline(point, detected_points)
if dist_to_poly < threshold:
per_class_confusion[detected_class][0, 0] += 1
else:
per_class_confusion[detected_class][0, 1] += 1
all_below_dist *= 0
if detected_class in dict_errors.keys():
dict_errors[detected_class].append(dist_to_poly)
else:
dict_errors[detected_class] = [dist_to_poly]
if all_below_dist:
global_confusion_mat[0, 0] += 1
else:
global_confusion_mat[0, 1] += 1
return global_confusion_mat, per_class_confusion, dict_errors
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluation camera calibration task')
parser.add_argument('-s', '--soccernet', default="/home/fmg/data/SN23/calibration-2023-bis/", type=str,
help='Path to the SoccerNet-V3 dataset folder')
parser.add_argument('-p', '--prediction', default="/home/fmg/results/SN23-tests/",
required=False, type=str,
help="Path to the prediction folder")
parser.add_argument('-t', '--threshold', default=5, required=False, type=int,
help="Accuracy threshold in pixels")
parser.add_argument('--split', required=False, type=str, default="valid", help='Select the split of data')
parser.add_argument('--resolution_width', required=False, type=int, default=960,
help='width resolution of the images')
parser.add_argument('--resolution_height', required=False, type=int, default=540,
help='height resolution of the images')
args = parser.parse_args()
accuracies = []
precisions = []
recalls = []
dict_errors = {}
per_class_confusion_dict = {}
dataset_dir = os.path.join(args.soccernet, args.split)
if not os.path.exists(dataset_dir):
print("Invalid dataset path !")
exit(-1)
annotation_files = [f for f in os.listdir(dataset_dir) if ".json" in f]
missed, total_frames = 0, 0
with tqdm(enumerate(annotation_files), total=len(annotation_files), ncols=160) as t:
for i, annotation_file in t:
frame_index = annotation_file.split(".")[0]
annotation_file = os.path.join(args.soccernet, args.split, annotation_file)
prediction_file = os.path.join(args.prediction, args.split, f"camera_{frame_index}.json")
total_frames += 1
if not os.path.exists(prediction_file):
missed += 1
continue
with open(annotation_file, 'r') as f:
line_annotations = json.load(f)
with open(prediction_file, 'r') as f:
predictions = json.load(f)
line_annotations = scale_points(line_annotations, args.resolution_width, args.resolution_height)
image_path = os.path.join(args.soccernet, args.split, f"{frame_index}.jpg")
img_groundtruth = line_annotations
img_prediction = get_polylines(predictions, args.resolution_width, args.resolution_height,
sampling_factor=0.9)
confusion1, per_class_conf1, reproj_errors1 = evaluate_camera_prediction(img_prediction,
img_groundtruth,
args.threshold)
confusion2, per_class_conf2, reproj_errors2 = evaluate_camera_prediction(img_prediction,
mirror_labels(img_groundtruth),
args.threshold)
accuracy1, accuracy2 = 0., 0.
if confusion1.sum() > 0:
accuracy1 = confusion1[0, 0] / confusion1.sum()
if confusion2.sum() > 0:
accuracy2 = confusion2[0, 0] / confusion2.sum()
if accuracy1 > accuracy2:
accuracy = accuracy1
confusion = confusion1
per_class_conf = per_class_conf1
reproj_errors = reproj_errors1
else:
accuracy = accuracy2
confusion = confusion2
per_class_conf = per_class_conf2
reproj_errors = reproj_errors2
accuracies.append(accuracy)
if confusion[0, :].sum() > 0:
precision = confusion[0, 0] / (confusion[0, :].sum())
precisions.append(precision)
if (confusion[0, 0] + confusion[1, 0]) > 0:
recall = confusion[0, 0] / (confusion[0, 0] + confusion[1, 0])
recalls.append(recall)
for line_class, errors in reproj_errors.items():
if line_class in dict_errors.keys():
dict_errors[line_class].extend(errors)
else:
dict_errors[line_class] = errors
for line_class, confusion_mat in per_class_conf.items():
if line_class in per_class_confusion_dict.keys():
per_class_confusion_dict[line_class] += confusion_mat
else:
per_class_confusion_dict[line_class] = confusion_mat
completeness_score = (total_frames - missed) / total_frames
mAccuracy = np.mean(accuracies)
final_score = completeness_score * mAccuracy
print(f" On SoccerNet {args.split} set, final score of : {final_score}")
print(f" On SoccerNet {args.split} set, completeness rate of : {completeness_score}")
mRecall = np.mean(recalls)
sRecall = np.std(recalls)
medianRecall = np.median(recalls)
print(
f" On SoccerNet {args.split} set, recall mean value : {mRecall * 100:2.2f}% with standard deviation of {sRecall * 100:2.2f}% and median of {medianRecall * 100:2.2f}%")
mPrecision = np.mean(precisions)
sPrecision = np.std(precisions)
medianPrecision = np.median(precisions)
print(
f" On SoccerNet {args.split} set, precision mean value : {mPrecision * 100:2.2f}% with standard deviation of {sPrecision * 100:2.2f}% and median of {medianPrecision * 100:2.2f}%")
sAccuracy = np.std(accuracies)
medianAccuracy = np.median(accuracies)
print(
f" On SoccerNet {args.split} set, accuracy mean value : {mAccuracy * 100:2.2f}% with standard deviation of {sAccuracy * 100:2.2f}% and median of {medianAccuracy * 100:2.2f}%")
print()
for line_class, confusion_mat in per_class_confusion_dict.items():
class_accuracy = confusion_mat[0, 0] / confusion_mat.sum()
class_recall = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[1, 0])
class_precision = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[0, 1])
print(
f"For class {line_class}, accuracy of {class_accuracy * 100:2.2f}%, precision of {class_precision * 100:2.2f}% and recall of {class_recall * 100:2.2f}%")
for k, v in dict_errors.items():
fig, ax1 = plt.subplots(figsize=(11, 8))
ax1.hist(v, bins=30, range=(0, 60))
ax1.set_title(k)
ax1.set_xlabel("Errors in pixel")
os.makedirs(f"./results/", exist_ok=True)
plt.savefig(f"./results/{k}_reprojection_error.png")
plt.close(fig)
|