File size: 15,788 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import json
import sys
import os

import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm

from camera import Camera
from evaluate_extremities import scale_points, distance, mirror_labels
from soccerpitch import SoccerPitch


def get_polylines(camera_annotation, width, height, sampling_factor=0.2):
    """

    Given a set of camera parameters, this function adapts the camera to the desired image resolution and then

    projects the 3D points belonging to the terrain model in order to give a dictionary associating the classes

    observed and the points projected in the image.



    :param camera_annotation: camera parameters in their json/dictionary format

    :param width: image width for evaluation

    :param height: image height for evaluation

    :return: a dictionary with keys corresponding to a class observed in the image ( a line of the 3D model whose

    projection falls in the image) and values are then the list of 2D projected points.

    """

    cam = Camera(width, height)
    cam.from_json_parameters(camera_annotation)
    field = SoccerPitch()
    projections = dict()
    sides = [
        np.array([1, 0, 0]),
        np.array([1, 0, -width + 1]),
        np.array([0, 1, 0]),
        np.array([0, 1, -height + 1])
    ]
    for key, points in field.sample_field_points(sampling_factor).items():
        projections_list = []
        in_img = False
        prev_proj = np.zeros(3)
        for i, point in enumerate(points):
            ext = cam.project_point(point)
            if ext[2] < 1e-5:
                # point at infinity or behind camera
                continue
            if 0 <= ext[0] < width and 0 <= ext[1] < height:

                if not in_img and i > 0:

                    line = np.cross(ext, prev_proj)
                    in_img_intersections = []
                    dist_to_ext = []
                    for side in sides:
                        intersection = np.cross(line, side)
                        intersection /= intersection[2]
                        if 0 <= intersection[0] < width and 0 <= intersection[1] < height:
                            in_img_intersections.append(intersection)
                            dist_to_ext.append(np.sqrt(np.sum(np.square(intersection - ext))))
                    if in_img_intersections:
                        intersection = in_img_intersections[np.argmin(dist_to_ext)]

                        projections_list.append(
                            {
                                "x": intersection[0],
                                "y": intersection[1]
                            }
                        )

                projections_list.append(
                    {
                        "x": ext[0],
                        "y": ext[1]
                    }
                )
                in_img = True
            elif in_img:
                # first point out
                line = np.cross(ext, prev_proj)

                in_img_intersections = []
                dist_to_ext = []
                for side in sides:
                    intersection = np.cross(line, side)
                    intersection /= intersection[2]
                    if 0 <= intersection[0] < width and 0 <= intersection[1] < height:
                        in_img_intersections.append(intersection)
                        dist_to_ext.append(np.sqrt(np.sum(np.square(intersection - ext))))
                if in_img_intersections:
                    intersection = in_img_intersections[np.argmin(dist_to_ext)]

                    projections_list.append(
                        {
                            "x": intersection[0],
                            "y": intersection[1]
                        }
                    )
                in_img = False
            prev_proj = ext
        if len(projections_list):
            projections[key] = projections_list
    return projections


def distance_to_polyline(point, polyline):
    """

    Computes euclidian distance between a point and a polyline.

    :param point: 2D point

    :param polyline: a list of 2D point

    :return: the distance value

    """
    if 0 < len(polyline) < 2:
        dist = distance(point, polyline[0])
        return dist
    else:
        dist_to_segments = []
        point_np = np.array([point["x"], point["y"], 1])

        for i in range(len(polyline) - 1):
            origin_segment = np.array([
                polyline[i]["x"],
                polyline[i]["y"],
                1
            ])
            end_segment = np.array([
                polyline[i + 1]["x"],
                polyline[i + 1]["y"],
                1
            ])
            line = np.cross(origin_segment, end_segment)
            line /= np.sqrt(np.square(line[0]) + np.square(line[1]))

            # project point on line l
            projected = np.cross((np.cross(np.array([line[0], line[1], 0]), point_np)), line)
            projected = projected / projected[2]

            v1 = projected - origin_segment
            v2 = end_segment - origin_segment
            k = np.dot(v1, v2) / np.dot(v2, v2)
            if 0 < k < 1:

                segment_distance = np.sqrt(np.sum(np.square(projected - point_np)))
            else:
                d1 = distance(point, polyline[i])
                d2 = distance(point, polyline[i + 1])
                segment_distance = np.min([d1, d2])

            dist_to_segments.append(segment_distance)
        return np.min(dist_to_segments)


def evaluate_camera_prediction(projected_lines, groundtruth_lines, threshold):
    """

    Computes confusion matrices for a level of precision specified by the threshold.

    A groundtruth line is correctly classified if it lies at less than threshold pixels from a line of the prediction

    of the same class.

    Computes also the reprojection error of each groundtruth point : the reprojection error is the L2 distance between

    the point and the projection of the line.

    :param projected_lines: dictionary of detected lines classes as keys and associated predicted points as values

    :param groundtruth_lines: dictionary of annotated lines classes as keys and associated annotated points as values

    :param threshold: distance in pixels that distinguishes good matches from bad ones

    :return: confusion matrix, per class confusion matrix & per class reprojection errors

    """
    global_confusion_mat = np.zeros((2, 2), dtype=np.float32)
    per_class_confusion = {}
    dict_errors = {}
    detected_classes = set(projected_lines.keys())
    groundtruth_classes = set(groundtruth_lines.keys())

    false_positives_classes = detected_classes - groundtruth_classes
    for false_positive_class in false_positives_classes:
        # false_positives = len(projected_lines[false_positive_class])
        if "Circle" not in false_positive_class:
            # Count only extremities for lines, independently of soccer pitch sampling
            false_positives = 2.
        else:
            false_positives = 9.
        per_class_confusion[false_positive_class] = np.array([[0., false_positives], [0., 0.]])
        global_confusion_mat[0, 1] += 1

    false_negatives_classes = groundtruth_classes - detected_classes
    for false_negatives_class in false_negatives_classes:
        false_negatives = len(groundtruth_lines[false_negatives_class])
        per_class_confusion[false_negatives_class] = np.array([[0., 0.], [false_negatives, 0.]])
        global_confusion_mat[1, 0] += 1

    common_classes = detected_classes - false_positives_classes

    for detected_class in common_classes:

        detected_points = projected_lines[detected_class]
        groundtruth_points = groundtruth_lines[detected_class]

        per_class_confusion[detected_class] = np.zeros((2, 2))

        all_below_dist = 1
        for point in groundtruth_points:

            dist_to_poly = distance_to_polyline(point, detected_points)
            if dist_to_poly < threshold:
                per_class_confusion[detected_class][0, 0] += 1
            else:
                per_class_confusion[detected_class][0, 1] += 1
                all_below_dist *= 0

            if detected_class in dict_errors.keys():
                dict_errors[detected_class].append(dist_to_poly)
            else:
                dict_errors[detected_class] = [dist_to_poly]

        if all_below_dist:
            global_confusion_mat[0, 0] += 1
        else:
            global_confusion_mat[0, 1] += 1

    return global_confusion_mat, per_class_confusion, dict_errors


if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Evaluation camera calibration task')

    parser.add_argument('-s', '--soccernet', default="/home/fmg/data/SN23/calibration-2023-bis/", type=str,
                        help='Path to the SoccerNet-V3 dataset folder')
    parser.add_argument('-p', '--prediction', default="/home/fmg/results/SN23-tests/",
                        required=False, type=str,
                        help="Path to the prediction folder")
    parser.add_argument('-t', '--threshold', default=5, required=False, type=int,
                        help="Accuracy threshold in pixels")
    parser.add_argument('--split', required=False, type=str, default="valid", help='Select the split of data')
    parser.add_argument('--resolution_width', required=False, type=int, default=960,
                        help='width resolution of the images')
    parser.add_argument('--resolution_height', required=False, type=int, default=540,
                        help='height resolution of the images')
    args = parser.parse_args()

    accuracies = []
    precisions = []
    recalls = []
    dict_errors = {}
    per_class_confusion_dict = {}

    dataset_dir = os.path.join(args.soccernet, args.split)
    if not os.path.exists(dataset_dir):
        print("Invalid dataset path !")
        exit(-1)

    annotation_files = [f for f in os.listdir(dataset_dir) if ".json" in f]

    missed, total_frames = 0, 0
    with tqdm(enumerate(annotation_files), total=len(annotation_files), ncols=160) as t:
        for i, annotation_file in t:
            frame_index = annotation_file.split(".")[0]
            annotation_file = os.path.join(args.soccernet, args.split, annotation_file)
            prediction_file = os.path.join(args.prediction, args.split, f"camera_{frame_index}.json")

            total_frames += 1

            if not os.path.exists(prediction_file):
                missed += 1

                continue

            with open(annotation_file, 'r') as f:
                line_annotations = json.load(f)

            with open(prediction_file, 'r') as f:
                predictions = json.load(f)

            line_annotations = scale_points(line_annotations, args.resolution_width, args.resolution_height)

            image_path = os.path.join(args.soccernet, args.split, f"{frame_index}.jpg")

            img_groundtruth = line_annotations

            img_prediction = get_polylines(predictions, args.resolution_width, args.resolution_height,
                                           sampling_factor=0.9)

            confusion1, per_class_conf1, reproj_errors1 = evaluate_camera_prediction(img_prediction,
                                                                                     img_groundtruth,
                                                                                     args.threshold)

            confusion2, per_class_conf2, reproj_errors2 = evaluate_camera_prediction(img_prediction,
                                                                                     mirror_labels(img_groundtruth),
                                                                                     args.threshold)

            accuracy1, accuracy2 = 0., 0.
            if confusion1.sum() > 0:
                accuracy1 = confusion1[0, 0] / confusion1.sum()

            if confusion2.sum() > 0:
                accuracy2 = confusion2[0, 0] / confusion2.sum()

            if accuracy1 > accuracy2:
                accuracy = accuracy1
                confusion = confusion1
                per_class_conf = per_class_conf1
                reproj_errors = reproj_errors1
            else:
                accuracy = accuracy2
                confusion = confusion2
                per_class_conf = per_class_conf2
                reproj_errors = reproj_errors2

            accuracies.append(accuracy)
            if confusion[0, :].sum() > 0:
                precision = confusion[0, 0] / (confusion[0, :].sum())
                precisions.append(precision)
            if (confusion[0, 0] + confusion[1, 0]) > 0:
                recall = confusion[0, 0] / (confusion[0, 0] + confusion[1, 0])
                recalls.append(recall)

            for line_class, errors in reproj_errors.items():
                if line_class in dict_errors.keys():
                    dict_errors[line_class].extend(errors)
                else:
                    dict_errors[line_class] = errors

            for line_class, confusion_mat in per_class_conf.items():
                if line_class in per_class_confusion_dict.keys():
                    per_class_confusion_dict[line_class] += confusion_mat
                else:
                    per_class_confusion_dict[line_class] = confusion_mat

    completeness_score = (total_frames - missed) / total_frames
    mAccuracy = np.mean(accuracies)

    final_score = completeness_score * mAccuracy
    print(f" On SoccerNet {args.split} set, final score of : {final_score}")
    print(f" On SoccerNet {args.split} set, completeness rate of : {completeness_score}")

    mRecall = np.mean(recalls)
    sRecall = np.std(recalls)
    medianRecall = np.median(recalls)
    print(
        f" On SoccerNet {args.split} set, recall mean value : {mRecall * 100:2.2f}% with standard deviation of {sRecall * 100:2.2f}% and median of {medianRecall * 100:2.2f}%")

    mPrecision = np.mean(precisions)
    sPrecision = np.std(precisions)
    medianPrecision = np.median(precisions)
    print(
        f" On SoccerNet {args.split} set, precision mean value : {mPrecision * 100:2.2f}% with standard deviation of {sPrecision * 100:2.2f}% and median of {medianPrecision * 100:2.2f}%")

    sAccuracy = np.std(accuracies)
    medianAccuracy = np.median(accuracies)
    print(
        f" On SoccerNet {args.split} set, accuracy mean value :  {mAccuracy * 100:2.2f}% with standard deviation of {sAccuracy * 100:2.2f}% and median of {medianAccuracy * 100:2.2f}%")

    print()

    for line_class, confusion_mat in per_class_confusion_dict.items():
        class_accuracy = confusion_mat[0, 0] / confusion_mat.sum()
        class_recall = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[1, 0])
        class_precision = confusion_mat[0, 0] / (confusion_mat[0, 0] + confusion_mat[0, 1])
        print(
            f"For class {line_class}, accuracy of {class_accuracy * 100:2.2f}%, precision of {class_precision * 100:2.2f}%  and recall of {class_recall * 100:2.2f}%")

        for k, v in dict_errors.items():
            fig, ax1 = plt.subplots(figsize=(11, 8))
            ax1.hist(v, bins=30, range=(0, 60))
            ax1.set_title(k)
            ax1.set_xlabel("Errors in pixel")
            os.makedirs(f"./results/", exist_ok=True)
            plt.savefig(f"./results/{k}_reprojection_error.png")
            plt.close(fig)