File size: 6,326 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import sys
import json
import glob
from typing import final

import yaml
import torch
import zipfile
import argparse
import warnings
import numpy as np
import torchvision.transforms as T
import torchvision.transforms.functional as f

from tqdm import tqdm
from PIL import Image

sys.path.insert(1, os.path.join(sys.path[0], '..'))
from model.cls_hrnet import get_cls_net
from model.cls_hrnet_l import get_cls_net as get_cls_net_l
from utils.utils_heatmap import get_keypoints_from_heatmap_batch_maxpool, get_keypoints_from_heatmap_batch_maxpool_l, \
    complete_keypoints, coords_to_dict
from utils.utils_keypoints import KeypointsDB
from utils.utils_lines import LineKeypointsDB


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--cfg", type=str, required=True,
                        help="Path to the (kp model) configuration file")
    parser.add_argument("--cfg_l", type=str, required=True,
                        help="Path to the (line model) configuration file")
    parser.add_argument("--root_dir", type=str, required=True,
                        help="Root directory")
    parser.add_argument("--split", type=str, required=True,
                        help="Dataset split")
    parser.add_argument("--save_dir", type=str, required=True,
                        help="Root directory")
    parser.add_argument("--weights_kp", type=str, required=True,
                        help="Model (keypoints) weigths to use")
    parser.add_argument("--weights_line", type=str, required=True,
                        help="Model (lines) weigths to use")
    parser.add_argument("--cuda", type=str, default="cuda:0",
                        help="CUDA device index (default: 'cuda:0')")
    parser.add_argument("--kp_th", type=float, default="0.1")
    parser.add_argument("--line_th", type=float, default="0.1")
    parser.add_argument("--batch", type=int, default=1, help="Batch size")
    parser.add_argument("--num_workers", type=int, default=4, help="Number of workers")
    parser.add_argument('--use_gt', action='store_true', help='Use ground truth (default: False)')


    args = parser.parse_args()
    return args



if __name__ == "__main__":
    args = parse_args()

    files = glob.glob(os.path.join(args.root_dir + args.split, "*.jpg"))

    if args.use_gt:
        zip_name_pred = args.save_dir + args.split + '_gt.zip'
    else:
        zip_name_pred = args.save_dir + args.split + '_pred.zip'


    if args.use_gt:
        device = torch.device(args.cuda if torch.cuda.is_available() else 'cpu')

        with zipfile.ZipFile(zip_name_pred, 'w') as zip_file:
            for file in tqdm(files, desc="Processing Images"):
                image = Image.open(file)
                w, h = image.size

                homography_file = args.root_dir + args.split + '/' + \
                                  file.split('/')[-1].split('.')[0] + '.homographyMatrix'

                json_path = file.split('.')[0] + ".json"
                f = open(json_path)
                data = json.load(f)
                kp_db = KeypointsDB(data, image)
                line_db = LineKeypointsDB(data, image)
                heatmaps, _ = kp_db.get_tensor_w_mask()
                heatmaps = torch.tensor(heatmaps).unsqueeze(0)
                heatmaps_l = line_db.get_tensor()
                heatmaps_l = torch.tensor(heatmaps_l).unsqueeze(0)
                kp_coords = get_keypoints_from_heatmap_batch_maxpool(heatmaps[:,:-1,:,:])
                line_coords = get_keypoints_from_heatmap_batch_maxpool_l(heatmaps_l[:,:-1,:,:])
                kp_dict = coords_to_dict(kp_coords, threshold=0.1)
                lines_dict = coords_to_dict(line_coords, threshold=0.1)
                final_kp_dict = complete_keypoints(kp_dict, lines_dict, w=w, h=h, normalize=True)
                final_dict = {'kp': final_kp_dict, 'lines': lines_dict}

                json_data = json.dumps(final_dict)
                zip_file.writestr(f"{file.split('/')[-1].split('.')[0]}.json", json_data)


    else:
        device = torch.device(args.cuda if torch.cuda.is_available() else 'cpu')
        cfg = yaml.safe_load(open(args.cfg, 'r'))
        cfg_l = yaml.safe_load(open(args.cfg_l, 'r'))

        loaded_state = torch.load(args.weights_kp, map_location=device)
        model = get_cls_net(cfg)
        model.load_state_dict(loaded_state)
        model.to(device)
        model.eval()

        loaded_state_l = torch.load(args.weights_line, map_location=device)
        model_l = get_cls_net_l(cfg_l)
        model_l.load_state_dict(loaded_state_l)
        model_l.to(device)
        model_l.eval()

        transform = T.Resize((540, 960))

        with zipfile.ZipFile(zip_name_pred, 'w') as zip_file:
            for file in tqdm(files, desc="Processing Images"):
                image = Image.open(file)
                image = f.to_tensor(image).float().to(device).unsqueeze(0)
                image = image if image.size()[-1] == 960 else transform(image)
                b, c, h, w = image.size()

                homography_file = args.root_dir + args.split + '/' + \
                                  file.split('/')[-1].split('.')[0] + '.homographyMatrix'

                with torch.no_grad():
                    heatmaps = model(image)
                    heatmaps_l = model_l(image)

                    kp_coords = get_keypoints_from_heatmap_batch_maxpool(heatmaps[:,:-1,:,:])
                    line_coords = get_keypoints_from_heatmap_batch_maxpool_l(heatmaps_l[:,:-1,:,:])
                    kp_dict = coords_to_dict(kp_coords, threshold=args.kp_th, ground_plane_only=True)
                    lines_dict = coords_to_dict(line_coords, threshold=args.line_th, ground_plane_only=True)
                    final_kp_dict, final_lines_dict = complete_keypoints(kp_dict[0], lines_dict[0],
                                                                        w=w, h=h, normalize=True)
                    final_dict = {'kp': final_kp_dict, 'lines': final_lines_dict}

                    json_data = json.dumps(final_dict)
                    zip_file.writestr(f"{file.split('/')[-1].split('.')[0]}.json", json_data)