File size: 8,137 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import sys
import json
import glob
import yaml
import torch
import zipfile
import argparse
import warnings
import numpy as np
import torchvision.transforms as T
import torchvision.transforms.functional as f

from tqdm import tqdm
from PIL import Image

sys.path.insert(1, os.path.join(sys.path[0], '..'))

from model.cls_hrnet import get_cls_net
from model.cls_hrnet_l import get_cls_net as get_cls_net_l
from utils.utils_keypoints import KeypointsDB
from utils.utils_lines import LineKeypointsDB
from utils.utils_heatmap import get_keypoints_from_heatmap_batch_maxpool, get_keypoints_from_heatmap_batch_maxpool_l, \
    coords_to_dict, complete_keypoints
from utils.utils_calib import FramebyFrameCalib

warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=np.RankWarning)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--cfg", type=str, required=True,
                        help="Path to the (kp model) configuration file")
    parser.add_argument("--cfg_l", type=str, required=True,
                        help="Path to the (line model) configuration file")
    parser.add_argument("--root_dir", type=str, required=True,
                        help="Root directory")
    parser.add_argument("--split", type=str, required=True,
                        help="Dataset split")
    parser.add_argument("--save_dir", type=str, required=True,
                        help="Saving file path")
    parser.add_argument("--weights_kp", type=str, required=True,
                        help="Model (keypoints) weigths to use")
    parser.add_argument("--weights_line", type=str, required=True,
                        help="Model (lines) weigths to use")
    parser.add_argument("--cuda", type=str, default="cuda:0",
                        help="CUDA device index (default: 'cuda:0')")
    parser.add_argument("--kp_th", type=float, default="0.1")
    parser.add_argument("--line_th", type=float, default="0.1")
    parser.add_argument("--max_reproj_err", type=float, default="50")
    parser.add_argument("--main_cam_only", action='store_true')
    parser.add_argument('--use_gt', action='store_true', help='Use ground truth annotations (default: False)')

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()

    files = glob.glob(os.path.join(args.root_dir + args.split, "*.jpg"))

    if args.main_cam_only:
        cam_info = json.load(open(args.root_dir + args.split + '/match_info_cam_gt.json'))
        files = [file for file in files if file.split('/')[-1] in cam_info.keys()]
        files = [file for file in files if cam_info[file.split('/')[-1]]['camera'] == 'Main camera center']
        # files = [file for file in files if int(match_info[file.split('/')[-1]]['ms_time']) == \
        #                                             int(match_info[file.split('/')[-1]]['replay_time'])]

    if args.main_cam_only:
        zip_name = args.save_dir + args.split + '_main.zip'
    else:
        zip_name = args.save_dir + args.split + '.zip'

    if args.use_gt:
        if args.main_cam_only:
            zip_name_pred = args.save_dir + args.split + '_main_gt.zip'
        else:
            zip_name_pred = args.save_dir + args.split + '_gt.zip'
    else:
        if args.main_cam_only:
            zip_name_pred = args.save_dir + args.split + '_main_pred.zip'
        else:
            zip_name_pred = args.save_dir + args.split + '_pred.zip'

    print(f"Saving results in {args.save_dir}")
    print(f"file: {zip_name_pred}")

    if args.use_gt:
        transform = T.Resize((540, 960))
        cam = FramebyFrameCalib(960, 540, denormalize=True)

        with zipfile.ZipFile(zip_name_pred, 'w') as zip_file:
            samples, complete = 0., 0.
            for file in tqdm(files, desc="Processing Images"):
                image = Image.open(file)
                file_name = file.split('/')[-1].split('.')[0]
                samples += 1

                json_path = file.split('.')[0] + ".json"
                f = open(json_path)
                data = json.load(f)

                kp_db = KeypointsDB(data, image)
                line_db = LineKeypointsDB(data, image)
                heatmaps, _ = kp_db.get_tensor_w_mask()
                heatmaps = torch.tensor(heatmaps).unsqueeze(0)
                heatmaps_l = line_db.get_tensor()
                heatmaps_l = torch.tensor(heatmaps_l).unsqueeze(0)
                kp_coords = get_keypoints_from_heatmap_batch_maxpool(heatmaps[:, :-1, :, :])
                line_coords = get_keypoints_from_heatmap_batch_maxpool_l(heatmaps_l[:, :-1, :, :])
                kp_dict = coords_to_dict(kp_coords, threshold=0.01)
                lines_dict = coords_to_dict(line_coords, threshold=0.01)

                cam.update(kp_dict, lines_dict)
                final_params_dict = cam.heuristic_voting()
                # final_params_dict = cam.calibrate(5)

                if final_params_dict:
                    complete += 1
                    cam_params = final_params_dict['cam_params']
                    print("heheheheheheh")
                    json_data = json.dumps(cam_params)
                    zip_file.writestr(f"camera_{file_name}.json", json_data)

    else:
        device = torch.device(args.cuda if torch.cuda.is_available() else 'cpu')
        cfg = yaml.safe_load(open(args.cfg, 'r'))
        cfg_l = yaml.safe_load(open(args.cfg_l, 'r'))

        loaded_state = torch.load(args.weights_kp, map_location=device)
        model = get_cls_net(cfg)
        model.load_state_dict(loaded_state)
        model.to(device)
        model.eval()

        loaded_state_l = torch.load(args.weights_line, map_location=device)
        model_l = get_cls_net_l(cfg_l)
        model_l.load_state_dict(loaded_state_l)
        model_l.to(device)
        model_l.eval()

        transform = T.Resize((540, 960))
        cam = FramebyFrameCalib(960, 540)

        with zipfile.ZipFile(zip_name_pred, 'w') as zip_file:
            samples, complete = 0., 0.
            for file in tqdm(files, desc="Processing Images"):
                image = Image.open(file)
                file_name = file.split('/')[-1].split('.')[0]
                samples += 1

                with torch.no_grad():
                    image = f.to_tensor(image).float().to(device).unsqueeze(0)
                    image = image if image.size()[-1] == 960 else transform(image)
                    b, c, h, w = image.size()
                    heatmaps = model(image)
                    heatmaps_l = model_l(image)

                    kp_coords = get_keypoints_from_heatmap_batch_maxpool(heatmaps[:, :-1, :, :])
                    line_coords = get_keypoints_from_heatmap_batch_maxpool_l(heatmaps_l[:, :-1, :, :])
                    kp_dict = coords_to_dict(kp_coords, threshold=args.kp_th)
                    lines_dict = coords_to_dict(line_coords, threshold=args.line_th)
                    kp_dict, lines_dict = complete_keypoints(kp_dict[0], lines_dict[0], w=w, h=h)

                    cam.update(kp_dict, lines_dict)
                    final_params_dict = cam.heuristic_voting(refine_lines=True)

                if final_params_dict:
                    if final_params_dict['rep_err'] <= args.max_reproj_err:
                        complete += 1
                        cam_params = final_params_dict['cam_params']
                        json_data = json.dumps(cam_params)
                        zip_file.writestr(f"camera_{file_name}.json", json_data)

    with zipfile.ZipFile(zip_name, 'w') as zip_file:
        for file in tqdm(files, desc="Processing Images"):
            file_name = file.split('/')[-1].split('.')[0]
            data = json.load(open(file.split('.')[0] + ".json"))
            json_data = json.dumps(data)
            zip_file.writestr(f"{file_name}.json", json_data)

    print(f'Completed {complete} / {samples}')