Spaces:
Runtime error
Runtime error
File size: 20,908 Bytes
8918ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import sys
import os
os.environ["HF_ENDPOINT"]="https://hf-mirror.com"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src')))
import argparse
import torch
import re
import json
import os
import warnings
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from torchmetrics.classification import Accuracy, Recall, Precision, MatthewsCorrCoef, AUROC, F1Score, MatthewsCorrCoef
from torchmetrics.classification import BinaryAccuracy, BinaryRecall, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryMatthewsCorrCoef, BinaryF1Score
from torchmetrics.regression import SpearmanCorrCoef
from transformers import EsmTokenizer, EsmModel, BertModel, BertTokenizer
from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer, AutoModelForMaskedLM, AutoModel
from transformers import logging
from datasets import load_dataset
from torch.utils.data import DataLoader
# from utils.data_utils import BatchSampler
# from utils.metrics import MultilabelF1Max
# from models.adapter_mdoel import AdapterModel
from data.batch_sampler import BatchSampler
from training.metrics import MultilabelF1Max
from models.adapter_model import AdapterModel
from models.lora_model import LoraModel
from peft import PeftModel
from typing import Dict, Any, Union, Tuple
from data.dataloader import prepare_dataloaders
from datetime import datetime
# ignore warning information
logging.set_verbosity_error()
warnings.filterwarnings("ignore")
def evaluate(model, plm_model, metrics, dataloader, loss_function, device=None):
total_loss = 0
total_samples = len(dataloader.dataset)
print(f"Total samples: {total_samples}")
epoch_iterator = tqdm(dataloader)
pred_labels = []
for i, batch in enumerate(epoch_iterator, 1):
for k, v in batch.items():
batch[k] = v.to(device)
label = batch["label"]
logits = model(plm_model, batch)
pred_labels.extend(logits.argmax(dim=1).cpu().numpy())
for metric_name, metric in metrics_dict.items():
if args.problem_type == 'regression' and args.num_labels == 1:
loss = loss_function(logits.squeeze(), label.squeeze())
metric(logits.squeeze(), label.squeeze())
elif args.problem_type == 'multi_label_classification':
loss = loss_function(logits, label.float())
metric(logits, label)
else:
loss = loss_function(logits, label)
metric(torch.argmax(logits, 1), label)
total_loss += loss.item() * len(label)
epoch_iterator.set_postfix(eval_loss=loss.item())
epoch_loss = total_loss / len(dataloader.dataset)
for k, v in metrics.items():
metrics[k] = [v.compute().item()]
print(f"{k}: {metrics[k][0]}")
metrics['loss'] = [epoch_loss]
return metrics, pred_labels
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model params
parser.add_argument('--eval_method', type=str, default=None, help='evaluation method')
parser.add_argument('--hidden_size', type=int, default=None, help='embedding hidden size of the model')
parser.add_argument('--num_attention_head', type=int, default=8, help='number of attention heads')
parser.add_argument('--attention_probs_dropout', type=float, default=0, help='attention probs dropout prob')
parser.add_argument('--plm_model', type=str, default='facebook/esm2_t33_650M_UR50D', help='esm model name')
parser.add_argument('--num_labels', type=int, default=2, help='number of labels')
parser.add_argument('--pooling_method', type=str, default='mean', help='pooling method')
parser.add_argument('--pooling_dropout', type=float, default=0.25, help='pooling dropout')
# dataset
parser.add_argument('--dataset', type=str, default=None, help='dataset name')
parser.add_argument('--problem_type', type=str, default=None, help='problem type')
parser.add_argument('--test_file', type=str, default=None, help='test file')
parser.add_argument('--split', type=str, default=None, help='split name in Huggingface')
parser.add_argument('--test_result_dir', type=str, default=None, help='test result directory')
parser.add_argument('--metrics', type=str, default=None, help='computation metrics')
parser.add_argument('--num_workers', type=int, default=4, help='number of workers')
parser.add_argument('--max_seq_len', type=int, default=None, help='max sequence length')
parser.add_argument('--batch_size', type=int, default=None, help='batch size for fixed batch size')
parser.add_argument('--batch_token', type=int, default=10000, help='max number of token per batch')
parser.add_argument('--use_foldseek', action='store_true', help='use foldseek')
parser.add_argument('--use_ss8', action='store_true', help='use ss8')
# model path
parser.add_argument('--output_model_name', type=str, default=None, help='model name')
parser.add_argument('--output_root', default="result", help='root directory to save trained models')
parser.add_argument('--output_dir', default=None, help='directory to save trained models')
parser.add_argument('--model_path', default=None, help='model path directly')
parser.add_argument('--structure_seq', type=str, default="", help='structure sequence')
parser.add_argument('--training_method', type=str, default="freeze", help='training method')
args = parser.parse_args()
if 'foldseek_seq' in args.structure_seq:
args.use_foldseek = True
print("Enabled foldseek_seq based on structure_seq parameter")
if 'ss8_seq' in args.structure_seq:
args.use_ss8 = True
print("Enabled ss8_seq based on structure_seq parameter")
device = "cuda" if torch.cuda.is_available() else "cpu"
os.makedirs(args.test_result_dir, exist_ok=True)
# build tokenizer and protein language model
if "esm" in args.plm_model:
tokenizer = EsmTokenizer.from_pretrained(args.plm_model)
plm_model = EsmModel.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.hidden_size
elif "bert" in args.plm_model:
tokenizer = BertTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
plm_model = BertModel.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.hidden_size
elif "prot_t5" in args.plm_model:
tokenizer = T5Tokenizer.from_pretrained(args.plm_model, do_lower_case=False)
plm_model = T5EncoderModel.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.d_model
elif "ankh" in args.plm_model:
tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
plm_model = T5EncoderModel.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.d_model
elif "ProSST" in args.plm_model:
tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.hidden_size
elif "Prime" in args.plm_model:
tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model)
args.hidden_size = plm_model.config.hidden_size
else:
tokenizer = AutoTokenizer.from_pretrained(args.plm_model)
plm_model = AutoModel.from_pretrained(args.plm_model).to(device).eval()
args.hidden_size = plm_model.config.hidden_size
args.vocab_size = plm_model.config.vocab_size
# Define metric configurations
metric_configs = {
'accuracy': {
'binary': BinaryAccuracy,
'multi': lambda: Accuracy(task="multiclass", num_classes=args.num_labels)
},
'recall': {
'binary': BinaryRecall,
'multi': lambda: Recall(task="multiclass", num_classes=args.num_labels)
},
'precision': {
'binary': BinaryPrecision,
'multi': lambda: Precision(task="multiclass", num_classes=args.num_labels)
},
'f1': {
'binary': BinaryF1Score,
'multi': lambda: F1Score(task="multiclass", num_classes=args.num_labels)
},
'mcc': {
'binary': BinaryMatthewsCorrCoef,
'multi': lambda: MatthewsCorrCoef(task="multiclass", num_classes=args.num_labels)
},
'auroc': {
'binary': BinaryAUROC,
'multi': lambda: AUROC(task="multiclass", num_classes=args.num_labels)
},
'f1_max': {
'any': lambda: MultilabelF1Max(num_labels=args.num_labels)
},
'spearman_corr': {
'any': SpearmanCorrCoef
}
}
# Initialize metrics dictionary
metrics_dict = {}
args.metrics = args.metrics.split(',')
# Create metrics based on configurations
for metric_name in args.metrics:
if metric_name not in metric_configs:
raise ValueError(f"Invalid metric: {metric_name}")
config = metric_configs[metric_name]
if 'any' in config:
metrics_dict[metric_name] = config['any']()
else:
metrics_dict[metric_name] = (config['binary']() if args.num_labels == 2
else config['multi']())
# Move metric to device
metrics_dict[metric_name].to(device)
# load adapter model
print("---------- Load Model ----------")
# model = AdapterModel(args)
# if args.model_path is not None:
# model_path = args.model_path
# else:
# model_path = f"{args.output_root}/{args.output_dir}/{args.output_model_name}"
if args.eval_method in ["full", "ses-adapter", "freeze"]:
model = AdapterModel(args)
elif args.eval_method in ['plm-lora', 'plm-qlora', 'plm-dora', 'plm-adalora', 'plm-ia3']:
model = LoraModel(args)
if args.model_path is not None:
model_path = args.model_path
else:
model_path = f"{args.output_root}/{args.output_dir}/{args.output_model_name}"
if args.eval_method == "full":
model_weights = torch.load(model_path)
model.load_state_dict(model_weights['model_state_dict'])
plm_model.load_state_dict(model_weights['plm_state_dict'])
else:
model.load_state_dict(torch.load(model_path))
model.to(device).eval()
if args.eval_method == 'plm-lora':
lora_path = model_path.replace(".pt", "_lora")
plm_model = PeftModel.from_pretrained(plm_model,lora_path)
plm_model = plm_model.merge_and_unload()
elif args.eval_method == 'plm-qlora':
lora_path = model_path.replace(".pt", "_qlora")
plm_model = PeftModel.from_pretrained(plm_model,lora_path)
plm_model = plm_model.merge_and_unload()
elif args.eval_method == "plm-dora":
dora_path = model_path.replace(".pt", "_dora")
plm_model = PeftModel.from_pretrained(plm_model, dora_path)
plm_model = plm_model.merge_and_unload()
elif args.eval_method == "plm-adalora":
adalora_path = model_path.replace(".pt", "_adalora")
plm_model = PeftModel.from_pretrained(plm_model, adalora_path)
plm_model = plm_model.merge_and_unload()
elif args.eval_method == "plm-ia3":
ia3_path = model_path.replace(".pt", "_ia3")
plm_model = PeftModel.from_pretrained(plm_model, ia3_path)
plm_model = plm_model.merge_and_unload()
plm_model.to(device).eval()
def param_num(model):
total = sum([param.numel() for param in model.parameters() if param.requires_grad])
num_M = total/1e6
if num_M >= 1000:
return "Number of parameter: %.2fB" % (num_M/1e3)
else:
return "Number of parameter: %.2fM" % (num_M)
print(param_num(model))
def collate_fn(examples):
aa_seqs, labels = [], []
if args.use_foldseek:
foldseek_seqs = []
if args.use_ss8:
ss8_seqs = []
prosst_stru_tokens = [] if "ProSST" in args.plm_model else None
for e in examples:
aa_seq = e["aa_seq"]
if args.use_foldseek:
foldseek_seq = e["foldseek_seq"]
if args.use_ss8:
ss8_seq = e["ss8_seq"]
if "ProSST" in args.plm_model and "prosst_stru_token" in e:
stru_token = e["prosst_stru_token"]
if isinstance(stru_token, str):
seq_clean = stru_token.strip("[]").replace(" ","")
tokens = list(map(int, seq_clean.split(','))) if seq_clean else []
elif isinstance(stru_token, (list, tuple)):
tokens = [int(x) for x in stru_token]
else:
tokens = []
prosst_stru_tokens.append(torch.tensor(tokens))
if 'prot_bert' in args.plm_model or "prot_t5" in args.plm_model:
aa_seq = " ".join(list(aa_seq))
aa_seq = re.sub(r"[UZOB]", "X", aa_seq)
if args.use_foldseek:
foldseek_seq = " ".join(list(foldseek_seq))
if args.use_ss8:
ss8_seq = " ".join(list(ss8_seq))
elif 'ankh' in args.plm_model:
aa_seq = list(aa_seq)
if args.use_foldseek:
foldseek_seq = list(foldseek_seq)
if args.use_ss8:
ss8_seq = list(ss8_seq)
aa_seqs.append(aa_seq)
if args.use_foldseek:
foldseek_seqs.append(foldseek_seq)
if args.use_ss8:
ss8_seqs.append(ss8_seq)
labels.append(e["label"])
if 'ankh' in args.plm_model:
aa_inputs = tokenizer.batch_encode_plus(aa_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")
if args.use_foldseek:
foldseek_input_ids = tokenizer.batch_encode_plus(foldseek_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")["input_ids"]
if args.use_ss8:
ss8_input_ids = tokenizer.batch_encode_plus(ss8_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")["input_ids"]
else:
aa_inputs = tokenizer(aa_seqs, return_tensors="pt", padding=True, truncation=True)
if args.use_foldseek:
foldseek_input_ids = tokenizer(foldseek_seqs, return_tensors="pt", padding=True, truncation=True)["input_ids"]
if args.use_ss8:
ss8_input_ids = tokenizer(ss8_seqs, return_tensors="pt", padding=True, truncation=True)["input_ids"]
aa_input_ids = aa_inputs["input_ids"]
attention_mask = aa_inputs["attention_mask"]
if args.problem_type == 'regression':
labels = torch.as_tensor(labels, dtype=torch.float)
else:
labels = torch.as_tensor(labels, dtype=torch.long)
data_dict = {
"aa_seq_input_ids": aa_input_ids,
"aa_seq_attention_mask": attention_mask,
"label": labels
}
if "ProSST" in args.plm_model and prosst_stru_tokens:
aa_max_length = len(aa_input_ids[0])
padded_tokens = []
for tokens in prosst_stru_tokens:
if tokens is None or len(tokens) == 0:
padded_tokens.append([0] * aa_max_length)
else:
struct_sequence = tokens.tolist()
padded_tokens.append(struct_sequence + [0] * (aa_max_length - len(struct_sequence)))
data_dict["aa_seq_stru_tokens"] = torch.tensor(padded_tokens, dtype=torch.long)
if args.use_foldseek:
data_dict["foldseek_seq_input_ids"] = foldseek_input_ids
if args.use_ss8:
data_dict["ss8_seq_input_ids"] = ss8_input_ids
return data_dict
loss_function = nn.CrossEntropyLoss()
def process_data_line(data):
if args.problem_type == 'multi_label_classification':
label_list = data['label'].split(',')
data['label'] = [int(l) for l in label_list]
binary_list = [0] * args.num_labels
for index in data['label']:
binary_list[index] = 1
data['label'] = binary_list
if args.max_seq_len is not None:
data["aa_seq"] = data["aa_seq"][:args.max_seq_len]
if args.use_foldseek:
data["foldseek_seq"] = data["foldseek_seq"][:args.max_seq_len]
if args.use_ss8:
data["ss8_seq"] = data["ss8_seq"][:args.max_seq_len]
# 如果是 ProSST 模型且有结构标记,也需要截断
if "ProSST" in args.plm_model and "prosst_stru_token" in data:
# 结构标记可能是字符串或列表形式
if isinstance(data["prosst_stru_token"], str):
pass
elif isinstance(data["prosst_stru_token"], (list, tuple)):
data["prosst_stru_token"] = data["prosst_stru_token"][:args.max_seq_len]
token_num = min(len(data["aa_seq"]), args.max_seq_len)
else:
token_num = len(data["aa_seq"])
return data, token_num
# process dataset from json file
def process_dataset_from_json(file):
dataset, token_nums = [], []
for l in open(file):
data = json.loads(l)
data, token_num = process_data_line(data)
dataset.append(data)
token_nums.append(token_num)
return dataset, token_nums
# process dataset from list
def process_dataset_from_list(data_list):
dataset, token_nums = [], []
for l in data_list:
data, token_num = process_data_line(l)
dataset.append(data)
token_nums.append(token_num)
return dataset, token_nums
if args.test_file.endswith('json'):
test_dataset, test_token_num = process_dataset_from_json(args.test_file)
elif args.test_file.endswith('csv'):
test_dataset, test_token_num = process_dataset_from_list(load_dataset("csv", data_files=args.test_file)['train'])
if args.test_result_dir:
test_result_df = pd.read_csv(args.test_file)
elif '/' in args.test_file: # Huggingface dataset (only csv now)
raw_dataset = load_dataset(args.test_file)
# Using the chosen split first.
if args.split and args.split in raw_dataset:
split = args.split
elif 'test' in raw_dataset:
split = 'test'
elif 'validation' in raw_dataset:
split = 'validation'
elif 'train' in raw_dataset:
split = 'train'
else:
split = list(raw_dataset.keys())[0]
test_dataset, test_token_num = process_dataset_from_list(raw_dataset[split])
if args.test_result_dir:
test_result_df = pd.DataFrame(raw_dataset[split])
else:
raise ValueError("Invalid file format")
if args.batch_size is None:
if args.batch_token is None:
raise ValueError("batch_size or batch_token must be specified")
test_loader = DataLoader(
test_dataset,
num_workers=args.num_workers,
collate_fn=collate_fn,
batch_sampler=BatchSampler(test_token_num, args.batch_token, False)
)
else:
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
collate_fn=collate_fn,
shuffle=False
)
print("---------- Start Eval ----------")
with torch.no_grad():
metric, pred_labels = evaluate(model, plm_model, metrics_dict, test_loader, loss_function, device)
if args.test_result_dir:
pd.DataFrame(metric).to_csv(f"{args.test_result_dir}/evaluation_metrics.csv", index=False)
test_result_df["pred_label"] = pred_labels
test_result_df.to_csv(f"{args.test_result_dir}/evaluation_result.csv", index=False)
|