File size: 20,908 Bytes
8918ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import sys
import os

os.environ["HF_ENDPOINT"]="https://hf-mirror.com"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src')))
import argparse
import torch
import re
import json
import os
import warnings
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from torchmetrics.classification import Accuracy, Recall, Precision, MatthewsCorrCoef, AUROC, F1Score, MatthewsCorrCoef
from torchmetrics.classification import BinaryAccuracy, BinaryRecall, BinaryAUROC, BinaryF1Score, BinaryPrecision, BinaryMatthewsCorrCoef, BinaryF1Score
from torchmetrics.regression import SpearmanCorrCoef
from transformers import EsmTokenizer, EsmModel, BertModel, BertTokenizer
from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer, AutoModelForMaskedLM, AutoModel
from transformers import logging
from datasets import load_dataset
from torch.utils.data import DataLoader
# from utils.data_utils import BatchSampler
# from utils.metrics import MultilabelF1Max
# from models.adapter_mdoel import AdapterModel
from data.batch_sampler import BatchSampler
from training.metrics import MultilabelF1Max
from models.adapter_model import AdapterModel
from models.lora_model import LoraModel
from peft import PeftModel
from typing import Dict, Any, Union, Tuple
from data.dataloader import prepare_dataloaders
from datetime import datetime

# ignore warning information
logging.set_verbosity_error()
warnings.filterwarnings("ignore")

def evaluate(model, plm_model, metrics, dataloader, loss_function, device=None):
    total_loss = 0
    total_samples = len(dataloader.dataset)
    print(f"Total samples: {total_samples}")
    epoch_iterator = tqdm(dataloader)
    pred_labels = []
    
    for i, batch in enumerate(epoch_iterator, 1):
            
        for k, v in batch.items():
            batch[k] = v.to(device)
        label = batch["label"]
        
        logits = model(plm_model, batch)
        pred_labels.extend(logits.argmax(dim=1).cpu().numpy())
        
        for metric_name, metric in metrics_dict.items():
            if args.problem_type == 'regression' and args.num_labels == 1:
                loss = loss_function(logits.squeeze(), label.squeeze())
                metric(logits.squeeze(), label.squeeze())
            elif args.problem_type == 'multi_label_classification':
                loss = loss_function(logits, label.float())
                metric(logits, label)
            else:
                loss = loss_function(logits, label)
                metric(torch.argmax(logits, 1), label)
                
        total_loss += loss.item() * len(label)
        epoch_iterator.set_postfix(eval_loss=loss.item())
    
    epoch_loss = total_loss / len(dataloader.dataset)
    for k, v in metrics.items():
        metrics[k] = [v.compute().item()]
        print(f"{k}: {metrics[k][0]}")
    metrics['loss'] = [epoch_loss]
    return metrics, pred_labels

if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    # model params
    parser.add_argument('--eval_method', type=str, default=None, help='evaluation method')
    parser.add_argument('--hidden_size', type=int, default=None, help='embedding hidden size of the model')
    parser.add_argument('--num_attention_head', type=int, default=8, help='number of attention heads')
    parser.add_argument('--attention_probs_dropout', type=float, default=0, help='attention probs dropout prob')
    parser.add_argument('--plm_model', type=str, default='facebook/esm2_t33_650M_UR50D', help='esm model name')
    parser.add_argument('--num_labels', type=int, default=2, help='number of labels')
    parser.add_argument('--pooling_method', type=str, default='mean', help='pooling method')
    parser.add_argument('--pooling_dropout', type=float, default=0.25, help='pooling dropout')
    
    # dataset
    parser.add_argument('--dataset', type=str, default=None, help='dataset name')
    parser.add_argument('--problem_type', type=str, default=None, help='problem type')
    parser.add_argument('--test_file', type=str, default=None, help='test file')
    parser.add_argument('--split', type=str, default=None, help='split name in Huggingface')
    parser.add_argument('--test_result_dir', type=str, default=None, help='test result directory')
    parser.add_argument('--metrics', type=str, default=None, help='computation metrics')
    parser.add_argument('--num_workers', type=int, default=4, help='number of workers')
    parser.add_argument('--max_seq_len', type=int, default=None, help='max sequence length')
    parser.add_argument('--batch_size', type=int, default=None, help='batch size for fixed batch size')
    parser.add_argument('--batch_token', type=int, default=10000, help='max number of token per batch')
    parser.add_argument('--use_foldseek', action='store_true', help='use foldseek')
    parser.add_argument('--use_ss8', action='store_true', help='use ss8')
    
    # model path
    parser.add_argument('--output_model_name', type=str, default=None, help='model name')
    parser.add_argument('--output_root', default="result", help='root directory to save trained models')
    parser.add_argument('--output_dir', default=None, help='directory to save trained models')
    parser.add_argument('--model_path', default=None, help='model path directly')
    parser.add_argument('--structure_seq', type=str, default="", help='structure sequence')
    parser.add_argument('--training_method', type=str, default="freeze", help='training method')
    args = parser.parse_args()
    
    if 'foldseek_seq' in args.structure_seq:
        args.use_foldseek = True
        print("Enabled foldseek_seq based on structure_seq parameter")
    if 'ss8_seq' in args.structure_seq:
        args.use_ss8 = True
        print("Enabled ss8_seq based on structure_seq parameter")
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    os.makedirs(args.test_result_dir, exist_ok=True)
    # build tokenizer and protein language model
    if "esm" in args.plm_model:
        tokenizer = EsmTokenizer.from_pretrained(args.plm_model)
        plm_model = EsmModel.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.hidden_size
    elif "bert" in args.plm_model:
        tokenizer = BertTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
        plm_model = BertModel.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.hidden_size
    elif "prot_t5" in args.plm_model:
        tokenizer = T5Tokenizer.from_pretrained(args.plm_model, do_lower_case=False)
        plm_model = T5EncoderModel.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.d_model
    elif "ankh" in args.plm_model:
        tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
        plm_model = T5EncoderModel.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.d_model
    elif "ProSST" in args.plm_model:
        tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
        plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.hidden_size
    elif "Prime" in args.plm_model:
        tokenizer = AutoTokenizer.from_pretrained(args.plm_model, do_lower_case=False)
        plm_model = AutoModelForMaskedLM.from_pretrained(args.plm_model)
        args.hidden_size = plm_model.config.hidden_size
    else:
        tokenizer = AutoTokenizer.from_pretrained(args.plm_model)
        plm_model = AutoModel.from_pretrained(args.plm_model).to(device).eval()
        args.hidden_size = plm_model.config.hidden_size

    args.vocab_size = plm_model.config.vocab_size
    
    # Define metric configurations
    metric_configs = {
        'accuracy': {
            'binary': BinaryAccuracy,
            'multi': lambda: Accuracy(task="multiclass", num_classes=args.num_labels)
        },
        'recall': {
            'binary': BinaryRecall,
            'multi': lambda: Recall(task="multiclass", num_classes=args.num_labels)
        },
        'precision': {
            'binary': BinaryPrecision,
            'multi': lambda: Precision(task="multiclass", num_classes=args.num_labels)
        },
        'f1': {
            'binary': BinaryF1Score,
            'multi': lambda: F1Score(task="multiclass", num_classes=args.num_labels)
        },
        'mcc': {
            'binary': BinaryMatthewsCorrCoef,
            'multi': lambda: MatthewsCorrCoef(task="multiclass", num_classes=args.num_labels)
        },
        'auroc': {
            'binary': BinaryAUROC,
            'multi': lambda: AUROC(task="multiclass", num_classes=args.num_labels)
        },
        'f1_max': {
            'any': lambda: MultilabelF1Max(num_labels=args.num_labels)
        },
        'spearman_corr': {
            'any': SpearmanCorrCoef
        }
    }

    # Initialize metrics dictionary
    metrics_dict = {}
    args.metrics = args.metrics.split(',')

    # Create metrics based on configurations
    for metric_name in args.metrics:
        if metric_name not in metric_configs:
            raise ValueError(f"Invalid metric: {metric_name}")
            
        config = metric_configs[metric_name]
        if 'any' in config:
            metrics_dict[metric_name] = config['any']()
        else:
            metrics_dict[metric_name] = (config['binary']() if args.num_labels == 2 
                                       else config['multi']())
        
        # Move metric to device
        metrics_dict[metric_name].to(device)

    
    # load adapter model
    print("---------- Load Model ----------")
    # model = AdapterModel(args)
    # if args.model_path is not None:
    #     model_path = args.model_path
    # else:
    #     model_path = f"{args.output_root}/{args.output_dir}/{args.output_model_name}"
    if args.eval_method in ["full", "ses-adapter", "freeze"]:
        model = AdapterModel(args)
    
    elif args.eval_method in ['plm-lora', 'plm-qlora', 'plm-dora', 'plm-adalora', 'plm-ia3']:
        model = LoraModel(args)

    if args.model_path is not None:
        model_path = args.model_path
    else:
        model_path = f"{args.output_root}/{args.output_dir}/{args.output_model_name}"
    if args.eval_method == "full":
        model_weights = torch.load(model_path)
        model.load_state_dict(model_weights['model_state_dict'])
        plm_model.load_state_dict(model_weights['plm_state_dict'])
    else:
        model.load_state_dict(torch.load(model_path))
    model.to(device).eval()
    
    if args.eval_method == 'plm-lora':
        lora_path = model_path.replace(".pt", "_lora")
        plm_model = PeftModel.from_pretrained(plm_model,lora_path)
        plm_model = plm_model.merge_and_unload()
    elif args.eval_method == 'plm-qlora':
        lora_path = model_path.replace(".pt", "_qlora")
        plm_model = PeftModel.from_pretrained(plm_model,lora_path)
        plm_model = plm_model.merge_and_unload()
    elif args.eval_method == "plm-dora":
        dora_path = model_path.replace(".pt", "_dora")
        plm_model = PeftModel.from_pretrained(plm_model, dora_path)
        plm_model = plm_model.merge_and_unload()
    elif args.eval_method == "plm-adalora":
        adalora_path = model_path.replace(".pt", "_adalora")
        plm_model = PeftModel.from_pretrained(plm_model, adalora_path)
        plm_model = plm_model.merge_and_unload()
    elif args.eval_method == "plm-ia3":
        ia3_path = model_path.replace(".pt", "_ia3")
        plm_model = PeftModel.from_pretrained(plm_model, ia3_path)
        plm_model = plm_model.merge_and_unload()
    plm_model.to(device).eval()  

    def param_num(model):
        total = sum([param.numel() for param in model.parameters() if param.requires_grad])
        num_M = total/1e6
        if num_M >= 1000:
            return "Number of parameter: %.2fB" % (num_M/1e3)
        else:
            return "Number of parameter: %.2fM" % (num_M)
    print(param_num(model))
    
    def collate_fn(examples):
        aa_seqs, labels = [], []
        if args.use_foldseek:
            foldseek_seqs = []
        if args.use_ss8:
            ss8_seqs = []
        prosst_stru_tokens = [] if "ProSST" in args.plm_model else None
        
        for e in examples:
            aa_seq = e["aa_seq"]
            if args.use_foldseek:
                foldseek_seq = e["foldseek_seq"]
            if args.use_ss8:
                ss8_seq = e["ss8_seq"]
            

            if "ProSST" in args.plm_model and "prosst_stru_token" in e:
                stru_token = e["prosst_stru_token"]
                if isinstance(stru_token, str):
                    seq_clean = stru_token.strip("[]").replace(" ","")
                    tokens = list(map(int, seq_clean.split(','))) if seq_clean else []
                elif isinstance(stru_token, (list, tuple)):
                    tokens = [int(x) for x in stru_token]
                else:
                    tokens = []
                prosst_stru_tokens.append(torch.tensor(tokens))
            
            if 'prot_bert' in args.plm_model or "prot_t5" in args.plm_model:
                aa_seq = " ".join(list(aa_seq))
                aa_seq = re.sub(r"[UZOB]", "X", aa_seq)
                if args.use_foldseek:
                    foldseek_seq = " ".join(list(foldseek_seq))
                if args.use_ss8:
                    ss8_seq = " ".join(list(ss8_seq))
            elif 'ankh' in args.plm_model:
                aa_seq = list(aa_seq)
                if args.use_foldseek:
                    foldseek_seq = list(foldseek_seq)
                if args.use_ss8:
                    ss8_seq = list(ss8_seq)
            
            aa_seqs.append(aa_seq)
            if args.use_foldseek:
                foldseek_seqs.append(foldseek_seq)
            if args.use_ss8:
                ss8_seqs.append(ss8_seq)
            labels.append(e["label"])
        
        if 'ankh' in args.plm_model:
            aa_inputs = tokenizer.batch_encode_plus(aa_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")
            if args.use_foldseek:
                foldseek_input_ids = tokenizer.batch_encode_plus(foldseek_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")["input_ids"]
            if args.use_ss8:
                ss8_input_ids = tokenizer.batch_encode_plus(ss8_seqs, add_special_tokens=True, padding=True, is_split_into_words=True, return_tensors="pt")["input_ids"]
        else:
            aa_inputs = tokenizer(aa_seqs, return_tensors="pt", padding=True, truncation=True)
            if args.use_foldseek:
                foldseek_input_ids = tokenizer(foldseek_seqs, return_tensors="pt", padding=True, truncation=True)["input_ids"]
            if args.use_ss8:
                ss8_input_ids = tokenizer(ss8_seqs, return_tensors="pt", padding=True, truncation=True)["input_ids"]
        
        aa_input_ids = aa_inputs["input_ids"]
        attention_mask = aa_inputs["attention_mask"]
        
        if args.problem_type == 'regression':
            labels = torch.as_tensor(labels, dtype=torch.float)
        else:
            labels = torch.as_tensor(labels, dtype=torch.long)
        
        data_dict = {
            "aa_seq_input_ids": aa_input_ids,
            "aa_seq_attention_mask": attention_mask,
            "label": labels
        }
        
        if "ProSST" in args.plm_model and prosst_stru_tokens:
            aa_max_length = len(aa_input_ids[0])
            padded_tokens = []
            for tokens in prosst_stru_tokens:
                if tokens is None or len(tokens) == 0:

                    padded_tokens.append([0] * aa_max_length)
                else:
                    struct_sequence = tokens.tolist()

                    padded_tokens.append(struct_sequence + [0] * (aa_max_length - len(struct_sequence)))
            
            data_dict["aa_seq_stru_tokens"] = torch.tensor(padded_tokens, dtype=torch.long)
        
        if args.use_foldseek:
            data_dict["foldseek_seq_input_ids"] = foldseek_input_ids
        if args.use_ss8:
            data_dict["ss8_seq_input_ids"] = ss8_input_ids
        
        return data_dict
        
    loss_function = nn.CrossEntropyLoss()
    
    def process_data_line(data):
        if args.problem_type == 'multi_label_classification':
            label_list = data['label'].split(',')
            data['label'] = [int(l) for l in label_list]
            binary_list = [0] * args.num_labels
            for index in data['label']:
                binary_list[index] = 1
            data['label'] = binary_list
        if args.max_seq_len is not None:
            data["aa_seq"] = data["aa_seq"][:args.max_seq_len]
            if args.use_foldseek:
                data["foldseek_seq"] = data["foldseek_seq"][:args.max_seq_len]
            if args.use_ss8:
                data["ss8_seq"] = data["ss8_seq"][:args.max_seq_len]
            # 如果是 ProSST 模型且有结构标记,也需要截断
            if "ProSST" in args.plm_model and "prosst_stru_token" in data:
                # 结构标记可能是字符串或列表形式
                if isinstance(data["prosst_stru_token"], str):

                    pass
                elif isinstance(data["prosst_stru_token"], (list, tuple)):
                    data["prosst_stru_token"] = data["prosst_stru_token"][:args.max_seq_len]
            token_num = min(len(data["aa_seq"]), args.max_seq_len)
        else:
            token_num = len(data["aa_seq"])
        return data, token_num
    
    # process dataset from json file
    def process_dataset_from_json(file):
        dataset, token_nums = [], []
        for l in open(file):
            data = json.loads(l)
            data, token_num = process_data_line(data)
            dataset.append(data)
            token_nums.append(token_num)
        return dataset, token_nums


    # process dataset from list
    def process_dataset_from_list(data_list):
        dataset, token_nums = [], []
        for l in data_list:
            data, token_num = process_data_line(l)
            dataset.append(data)
            token_nums.append(token_num)
        return dataset, token_nums
    
    
    if args.test_file.endswith('json'):
        test_dataset, test_token_num = process_dataset_from_json(args.test_file)
    elif args.test_file.endswith('csv'):
        test_dataset, test_token_num = process_dataset_from_list(load_dataset("csv", data_files=args.test_file)['train'])
        if args.test_result_dir:
            test_result_df = pd.read_csv(args.test_file)
    elif '/' in args.test_file:  # Huggingface dataset (only csv now)
        raw_dataset = load_dataset(args.test_file)
        # Using the chosen split first.
        if args.split and args.split in raw_dataset:
            split = args.split
        elif 'test' in raw_dataset:
            split = 'test'
        elif 'validation' in raw_dataset:
            split = 'validation'
        elif 'train' in raw_dataset:
            split = 'train'
        else:
            split = list(raw_dataset.keys())[0]
        
        test_dataset, test_token_num = process_dataset_from_list(raw_dataset[split])
        if args.test_result_dir:
            test_result_df = pd.DataFrame(raw_dataset[split])
    else:
        raise ValueError("Invalid file format")
    
    
    if args.batch_size is None:
        if args.batch_token is None:
            raise ValueError("batch_size or batch_token must be specified")
        test_loader = DataLoader(
            test_dataset, 
            num_workers=args.num_workers, 
            collate_fn=collate_fn,
            batch_sampler=BatchSampler(test_token_num, args.batch_token, False)
        )
    else:
        test_loader = DataLoader(
            test_dataset,
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            collate_fn=collate_fn,
            shuffle=False
        )

    print("---------- Start Eval ----------")
    with torch.no_grad():
        metric, pred_labels = evaluate(model, plm_model, metrics_dict, test_loader, loss_function, device)
        if args.test_result_dir:
            pd.DataFrame(metric).to_csv(f"{args.test_result_dir}/evaluation_metrics.csv", index=False)
            test_result_df["pred_label"] = pred_labels
            test_result_df.to_csv(f"{args.test_result_dir}/evaluation_result.csv", index=False)