Spaces:
Sleeping
Sleeping
File size: 4,667 Bytes
d5d7329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from __future__ import annotations
from logging import getLogger
from pathlib import Path
from random import shuffle
from typing import Iterable, Literal
import librosa
import numpy as np
import torch
import torchaudio
from joblib import Parallel, cpu_count, delayed
from tqdm import tqdm
from transformers import HubertModel
import so_vits_svc_fork.f0
from so_vits_svc_fork import utils
from ..hparams import HParams
from ..modules.mel_processing import spec_to_mel_torch, spectrogram_torch
from ..utils import get_optimal_device, get_total_gpu_memory
from .preprocess_utils import check_hubert_min_duration
LOG = getLogger(__name__)
HUBERT_MEMORY = 2900
HUBERT_MEMORY_CREPE = 3900
def _process_one(
*,
filepath: Path,
content_model: HubertModel,
device: torch.device | str = get_optimal_device(),
f0_method: Literal["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"] = "dio",
force_rebuild: bool = False,
hps: HParams,
):
audio, sr = librosa.load(filepath, sr=hps.data.sampling_rate, mono=True)
if not check_hubert_min_duration(audio, sr):
LOG.info(f"Skip {filepath} because it is too short.")
return
data_path = filepath.parent / (filepath.name + ".data.pt")
if data_path.exists() and not force_rebuild:
return
# Compute f0
f0 = so_vits_svc_fork.f0.compute_f0(
audio, sampling_rate=sr, hop_length=hps.data.hop_length, method=f0_method
)
f0, uv = so_vits_svc_fork.f0.interpolate_f0(f0)
f0 = torch.from_numpy(f0).float()
uv = torch.from_numpy(uv).float()
# Compute HuBERT content
audio = torch.from_numpy(audio).float().to(device)
c = utils.get_content(
content_model,
audio,
device,
sr=sr,
legacy_final_proj=hps.data.get("contentvec_final_proj", True),
)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
torch.cuda.empty_cache()
# Compute spectrogram
audio, sr = torchaudio.load(filepath)
spec = spectrogram_torch(audio, hps).squeeze(0)
mel_spec = spec_to_mel_torch(spec, hps)
torch.cuda.empty_cache()
# fix lengths
lmin = min(spec.shape[1], mel_spec.shape[1], f0.shape[0], uv.shape[0], c.shape[1])
spec, mel_spec, f0, uv, c = (
spec[:, :lmin],
mel_spec[:, :lmin],
f0[:lmin],
uv[:lmin],
c[:, :lmin],
)
# get speaker id
spk_name = filepath.parent.name
spk = hps.spk.__dict__[spk_name]
spk = torch.tensor(spk).long()
assert (
spec.shape[1] == mel_spec.shape[1] == f0.shape[0] == uv.shape[0] == c.shape[1]
), (spec.shape, mel_spec.shape, f0.shape, uv.shape, c.shape)
data = {
"spec": spec,
"mel_spec": mel_spec,
"f0": f0,
"uv": uv,
"content": c,
"audio": audio,
"spk": spk,
}
data = {k: v.cpu() for k, v in data.items()}
with data_path.open("wb") as f:
torch.save(data, f)
def _process_batch(filepaths: Iterable[Path], pbar_position: int, **kwargs):
hps = kwargs["hps"]
content_model = utils.get_hubert_model(
get_optimal_device(), hps.data.get("contentvec_final_proj", True)
)
for filepath in tqdm(filepaths, position=pbar_position):
_process_one(
content_model=content_model,
filepath=filepath,
**kwargs,
)
def preprocess_hubert_f0(
input_dir: Path | str,
config_path: Path | str,
n_jobs: int | None = None,
f0_method: Literal["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"] = "dio",
force_rebuild: bool = False,
):
input_dir = Path(input_dir)
config_path = Path(config_path)
hps = utils.get_hparams(config_path)
if n_jobs is None:
# add cpu_count() to avoid SIGKILL
memory = get_total_gpu_memory("total")
n_jobs = min(
max(
memory
// (HUBERT_MEMORY_CREPE if f0_method == "crepe" else HUBERT_MEMORY)
if memory is not None
else 1,
1,
),
cpu_count(),
)
LOG.info(f"n_jobs automatically set to {n_jobs}, memory: {memory} MiB")
filepaths = list(input_dir.rglob("*.wav"))
n_jobs = min(len(filepaths) // 16 + 1, n_jobs)
shuffle(filepaths)
filepath_chunks = np.array_split(filepaths, n_jobs)
Parallel(n_jobs=n_jobs)(
delayed(_process_batch)(
filepaths=chunk,
pbar_position=pbar_position,
f0_method=f0_method,
force_rebuild=force_rebuild,
hps=hps,
)
for (pbar_position, chunk) in enumerate(filepath_chunks)
)
|