Spaces:
Sleeping
Sleeping
File size: 5,753 Bytes
d5d7329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
"""from logging import getLogger
import torch
import torch.utils.data
import torchaudio
LOG = getLogger(__name__)
from ..hparams import HParams
def spectrogram_torch(audio: torch.Tensor, hps: HParams) -> torch.Tensor:
return torchaudio.transforms.Spectrogram(
n_fft=hps.data.filter_length,
win_length=hps.data.win_length,
hop_length=hps.data.hop_length,
power=1.0,
window_fn=torch.hann_window,
normalized=False,
).to(audio.device)(audio)
def spec_to_mel_torch(spec: torch.Tensor, hps: HParams) -> torch.Tensor:
return torchaudio.transforms.MelScale(
n_mels=hps.data.n_mel_channels,
sample_rate=hps.data.sampling_rate,
f_min=hps.data.mel_fmin,
f_max=hps.data.mel_fmax,
).to(spec.device)(spec)
def mel_spectrogram_torch(audio: torch.Tensor, hps: HParams) -> torch.Tensor:
return torchaudio.transforms.MelSpectrogram(
sample_rate=hps.data.sampling_rate,
n_fft=hps.data.filter_length,
n_mels=hps.data.n_mel_channels,
win_length=hps.data.win_length,
hop_length=hps.data.hop_length,
f_min=hps.data.mel_fmin,
f_max=hps.data.mel_fmax,
power=1.0,
window_fn=torch.hann_window,
normalized=False,
).to(audio.device)(audio)"""
from logging import getLogger
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
LOG = getLogger(__name__)
MAX_WAV_VALUE = 32768.0
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, hps, center=False):
if torch.min(y) < -1.0:
LOG.info("min value is ", torch.min(y))
if torch.max(y) > 1.0:
LOG.info("max value is ", torch.max(y))
n_fft = hps.data.filter_length
hop_size = hps.data.hop_length
win_size = hps.data.win_length
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, hps):
sampling_rate = hps.data.sampling_rate
n_fft = hps.data.filter_length
num_mels = hps.data.n_mel_channels
fmin = hps.data.mel_fmin
fmax = hps.data.mel_fmax
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=spec.dtype, device=spec.device
)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
def mel_spectrogram_torch(y, hps, center=False):
sampling_rate = hps.data.sampling_rate
n_fft = hps.data.filter_length
num_mels = hps.data.n_mel_channels
fmin = hps.data.mel_fmin
fmax = hps.data.mel_fmax
hop_size = hps.data.hop_length
win_size = hps.data.win_length
if torch.min(y) < -1.0:
LOG.info(f"min value is {torch.min(y)}")
if torch.max(y) > 1.0:
LOG.info(f"max value is {torch.max(y)}")
global mel_basis, hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=y.dtype, device=y.device
)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
|