Spaces:
Runtime error
Runtime error
Reduced duplicate code by adding 'itf_agent'
Browse files- itf_agent.py +99 -0
- management.py +4 -4
- solver.py +77 -359
itf_agent.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core.workflow import Context
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
from args import LLMInterface
|
8 |
+
from llm_factory import LLMFactory
|
9 |
+
from llama_index.core.agent.workflow import AgentWorkflow
|
10 |
+
|
11 |
+
|
12 |
+
class IAgent():
|
13 |
+
def __init__(self, temperature, max_tokens, sys_prompt_file, llm_itf: LLMInterface):
|
14 |
+
self.temperature, self.max_tokens = temperature, max_tokens
|
15 |
+
# Load the system prompt from a file
|
16 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", sys_prompt_file)
|
17 |
+
self.system_prompt = ""
|
18 |
+
with open(system_prompt_path, "r") as file:
|
19 |
+
self.system_prompt = file.read().strip()
|
20 |
+
# Initialize the tool agents
|
21 |
+
self.tools = self.setup_tools()
|
22 |
+
self.slaves: List[IAgent] = self.setup_slaves()
|
23 |
+
# Define the LLM and agent
|
24 |
+
self.llm = LLMFactory.create(llm_itf, self.system_prompt, temperature, max_tokens)
|
25 |
+
self.agent = self._setup_agent()
|
26 |
+
self.ctx = Context(self.agent)
|
27 |
+
|
28 |
+
def setup_tools(self) -> List:
|
29 |
+
"""
|
30 |
+
Abstract method to set up the tools.
|
31 |
+
This method must be overridden by subclasses to define custom tools this agent can use.
|
32 |
+
"""
|
33 |
+
raise NotImplementedError("Subclasses must implement the setup_tools method.")
|
34 |
+
|
35 |
+
def setup_slaves(self) -> List:
|
36 |
+
"""
|
37 |
+
Abstract method to set up the slave agents.
|
38 |
+
This method must be overridden by subclasses to define custom sub-agents this agent can use.
|
39 |
+
"""
|
40 |
+
raise NotImplementedError("Subclasses must implement the setup_slaves method.")
|
41 |
+
|
42 |
+
def _setup_agent(self) -> AgentWorkflow:
|
43 |
+
"""
|
44 |
+
Initializes and returns an agent workflow based on the presence of tools and slaves.
|
45 |
+
If both `self.tools` and `self.slaves` are empty, it sets up a default agent using the provided language model (`self.llm`).
|
46 |
+
Otherwise, it creates an agent workflow using the combined list of tools and slaves with the language model.
|
47 |
+
Returns:
|
48 |
+
AgentWorkflow: An instance of the agent workflow configured with the appropriate tools and language model.
|
49 |
+
"""
|
50 |
+
if not self.tools and not self.slaves:
|
51 |
+
return AgentWorkflow.setup_agent(llm=self.llm)
|
52 |
+
|
53 |
+
# Create tools from slaves: each tool calls slave.query(question) asynchronously
|
54 |
+
slave_tools = []
|
55 |
+
for slave in self.slaves:
|
56 |
+
slave_tools.append(slave.query)
|
57 |
+
|
58 |
+
self.tools.extend(slave_tools)
|
59 |
+
|
60 |
+
return AgentWorkflow.from_tools_or_functions(
|
61 |
+
self.tools,
|
62 |
+
llm=self.llm
|
63 |
+
)
|
64 |
+
|
65 |
+
def get_system_prompt(self) -> str:
|
66 |
+
"""
|
67 |
+
Retrieves the system prompt.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
str: The system prompt string.
|
71 |
+
"""
|
72 |
+
return self.system_prompt
|
73 |
+
|
74 |
+
async def query(self, question: str) -> str:
|
75 |
+
"""
|
76 |
+
Asynchronously queries the agent with a given question and returns the response.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
question (str): The question to be sent to the agent.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
str: The response from the agent as a string.
|
83 |
+
"""
|
84 |
+
response = await self.agent.run(question, ctx=self.ctx)
|
85 |
+
response = str(response)
|
86 |
+
return response
|
87 |
+
|
88 |
+
def clear_context(self):
|
89 |
+
"""
|
90 |
+
Clears the current context of the agent, resetting any conversation history.
|
91 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
92 |
+
"""
|
93 |
+
self.ctx = Context(self.agent)
|
94 |
+
|
95 |
+
if not self.slaves:
|
96 |
+
return
|
97 |
+
|
98 |
+
for slave in self.slaves:
|
99 |
+
slave.clear_context()
|
management.py
CHANGED
@@ -72,18 +72,18 @@ class Manager:
|
|
72 |
self.solver = Solver(temperature, max_tokens)
|
73 |
self.summarizer = Summarizer(temperature, max_tokens)
|
74 |
|
75 |
-
async def query(self, question: str,
|
76 |
"""
|
77 |
Process a question using the manager agent and return a response.
|
78 |
|
79 |
Args:
|
80 |
question: The question or task to process
|
81 |
-
|
82 |
|
83 |
Returns:
|
84 |
The agent's response as a string
|
85 |
"""
|
86 |
-
if
|
87 |
response = await self.agent.run(question, ctx=self.ctx)
|
88 |
else:
|
89 |
response = await self.agent.run(question)
|
@@ -117,7 +117,7 @@ class Manager:
|
|
117 |
observation = ""
|
118 |
if self.current_depth < self.max_depth:
|
119 |
for task in tasks:
|
120 |
-
solution = await self.query(task,
|
121 |
response = f"For task:\n\n{task}\n\nThe following break up has been provided:\n\n{solution}\n\n"
|
122 |
observation += response
|
123 |
elif try_solving:
|
|
|
72 |
self.solver = Solver(temperature, max_tokens)
|
73 |
self.summarizer = Summarizer(temperature, max_tokens)
|
74 |
|
75 |
+
async def query(self, question: str, has_context = True) -> str:
|
76 |
"""
|
77 |
Process a question using the manager agent and return a response.
|
78 |
|
79 |
Args:
|
80 |
question: The question or task to process
|
81 |
+
has_context: Whether to maintain context between queries (default: True)
|
82 |
|
83 |
Returns:
|
84 |
The agent's response as a string
|
85 |
"""
|
86 |
+
if has_context:
|
87 |
response = await self.agent.run(question, ctx=self.ctx)
|
88 |
else:
|
89 |
response = await self.agent.run(question)
|
|
|
117 |
observation = ""
|
118 |
if self.current_depth < self.max_depth:
|
119 |
for task in tasks:
|
120 |
+
solution = await self.query(task, has_context=False)
|
121 |
response = f"For task:\n\n{task}\n\nThe following break up has been provided:\n\n{solution}\n\n"
|
122 |
observation += response
|
123 |
elif try_solving:
|
solver.py
CHANGED
@@ -1,413 +1,131 @@
|
|
1 |
-
from
|
2 |
-
from llama_index.core.tools import FunctionTool
|
3 |
-
from llama_index.core.workflow import Context
|
4 |
|
5 |
-
import
|
6 |
-
import os
|
7 |
-
|
8 |
-
from llm_factory import LLMFactory
|
9 |
from toolbox import Toolbox
|
10 |
from args import Args
|
11 |
|
12 |
|
13 |
-
class Summarizer:
|
14 |
def __init__(self, temperature, max_tokens):
|
15 |
-
|
16 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_summarizer.txt")
|
17 |
-
self.system_prompt = ""
|
18 |
-
with open(system_prompt_path, "r") as file:
|
19 |
-
self.system_prompt = file.read().strip()
|
20 |
-
# Define the LLM and agent
|
21 |
-
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
22 |
-
self.agent = AgentWorkflow.setup_agent(llm=llm)
|
23 |
-
self.ctx = Context(self.agent)
|
24 |
-
|
25 |
-
def get_system_prompt(self) -> str:
|
26 |
-
"""
|
27 |
-
Retrieves the system prompt.
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
str: The system prompt string.
|
31 |
-
"""
|
32 |
-
return self.system_prompt
|
33 |
|
34 |
-
|
35 |
"""
|
36 |
-
|
37 |
-
|
38 |
-
Args:
|
39 |
-
question (str): The question to be sent to the agent.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
str: The response from the agent as a string.
|
43 |
"""
|
44 |
-
|
45 |
-
response = str(response)
|
46 |
-
return response
|
47 |
|
48 |
-
def
|
49 |
"""
|
50 |
-
|
51 |
-
This
|
52 |
"""
|
53 |
-
|
54 |
|
55 |
|
56 |
-
class Researcher:
|
57 |
def __init__(self, temperature, max_tokens):
|
58 |
-
|
59 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_researcher.txt")
|
60 |
-
self.system_prompt = ""
|
61 |
-
with open(system_prompt_path, "r") as file:
|
62 |
-
self.system_prompt = file.read().strip()
|
63 |
-
# Define the LLM and agent
|
64 |
-
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
65 |
-
self.agent = AgentWorkflow.from_tools_or_functions(
|
66 |
-
Toolbox.web_search.duck_duck_go_tools,
|
67 |
-
llm=llm
|
68 |
-
)
|
69 |
-
self.ctx = Context(self.agent)
|
70 |
-
|
71 |
-
def get_system_prompt(self) -> str:
|
72 |
-
"""
|
73 |
-
Retrieves the system prompt.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
str: The system prompt string.
|
77 |
-
"""
|
78 |
-
return self.system_prompt
|
79 |
-
|
80 |
-
async def query(self, question: str) -> str:
|
81 |
-
"""
|
82 |
-
Asynchronously queries the agent with a given question and returns the response.
|
83 |
-
|
84 |
-
Args:
|
85 |
-
question (str): The question to be sent to the agent.
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
"""
|
90 |
-
response = await self.agent.run(question, ctx=self.ctx)
|
91 |
-
response = str(response)
|
92 |
-
return response
|
93 |
|
94 |
-
def
|
95 |
-
|
96 |
-
Clears the current context of the agent, resetting any conversation history.
|
97 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
98 |
-
"""
|
99 |
-
self.ctx = Context(self.agent)
|
100 |
|
101 |
|
102 |
-
class EncryptionExpert:
|
103 |
def __init__(self, temperature, max_tokens):
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
self.system_prompt = file.read().strip()
|
109 |
-
# Define the LLM and agent
|
110 |
-
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
111 |
-
self.agent = AgentWorkflow.from_tools_or_functions(
|
112 |
-
[
|
113 |
Toolbox.encryption.base64_encode,
|
114 |
Toolbox.encryption.base64_decode,
|
115 |
Toolbox.encryption.caesar_cipher_encode,
|
116 |
Toolbox.encryption.caesar_cipher_decode,
|
117 |
Toolbox.encryption.reverse_string
|
118 |
# TODO: Add more encryption tools
|
119 |
-
]
|
120 |
-
llm=llm
|
121 |
-
)
|
122 |
-
self.ctx = Context(self.agent)
|
123 |
-
# Initialize the tool agents
|
124 |
-
self.math_expert = MathExpert(temperature, max_tokens)
|
125 |
-
self.reasoner = Reasoner(temperature, max_tokens)
|
126 |
-
|
127 |
-
def get_system_prompt(self) -> str:
|
128 |
-
"""
|
129 |
-
Retrieves the system prompt.
|
130 |
-
|
131 |
-
Returns:
|
132 |
-
str: The system prompt string.
|
133 |
-
"""
|
134 |
-
return self.system_prompt
|
135 |
-
|
136 |
-
async def query(self, question: str) -> str:
|
137 |
-
"""
|
138 |
-
Asynchronously queries the agent with a given question and returns the response.
|
139 |
-
|
140 |
-
Args:
|
141 |
-
question (str): The question to be sent to the agent.
|
142 |
-
|
143 |
-
Returns:
|
144 |
-
str: The response from the agent as a string.
|
145 |
-
"""
|
146 |
-
response = await self.agent.run(question, ctx=self.ctx)
|
147 |
-
response = str(response)
|
148 |
-
return response
|
149 |
|
150 |
-
def
|
151 |
-
|
152 |
-
Clears the current context of the agent, resetting any conversation history.
|
153 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
154 |
-
Also clears the context of any tool agents.
|
155 |
-
"""
|
156 |
-
self.ctx = Context(self.agent)
|
157 |
-
# Clear context for tool agents
|
158 |
-
self.math_expert.clear_context()
|
159 |
-
self.reasoner.clear_context()
|
160 |
|
161 |
|
162 |
-
class MathExpert:
|
163 |
def __init__(self, temperature, max_tokens):
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
self.system_prompt = file.read().strip()
|
169 |
-
# Define the LLM and agent
|
170 |
-
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
171 |
-
self.agent = AgentWorkflow.from_tools_or_functions(
|
172 |
-
[
|
173 |
Toolbox.math.symbolic_calc,
|
174 |
Toolbox.math.unit_converter,
|
175 |
-
]
|
176 |
-
llm=llm
|
177 |
-
)
|
178 |
-
self.ctx = Context(self.agent)
|
179 |
-
# Initialize the tool agents
|
180 |
-
self.reasoner = Reasoner(temperature, max_tokens)
|
181 |
-
|
182 |
-
def get_system_prompt(self) -> str:
|
183 |
-
"""
|
184 |
-
Retrieves the system prompt.
|
185 |
-
|
186 |
-
Returns:
|
187 |
-
str: The system prompt string.
|
188 |
-
"""
|
189 |
-
return self.system_prompt
|
190 |
-
|
191 |
-
async def query(self, question: str) -> str:
|
192 |
-
"""
|
193 |
-
Asynchronously queries the agent with a given question and returns the response.
|
194 |
|
195 |
-
|
196 |
-
|
|
|
197 |
|
198 |
-
Returns:
|
199 |
-
str: The response from the agent as a string.
|
200 |
-
"""
|
201 |
-
response = await self.agent.run(question, ctx=self.ctx)
|
202 |
-
response = str(response)
|
203 |
-
return response
|
204 |
-
|
205 |
-
def clear_context(self):
|
206 |
-
"""
|
207 |
-
Clears the current context of the agent, resetting any conversation history.
|
208 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
209 |
-
Also clears the context of any tool agents.
|
210 |
-
"""
|
211 |
-
self.ctx = Context(self.agent)
|
212 |
-
self.reasoner.clear_context()
|
213 |
|
214 |
-
|
215 |
-
class Reasoner:
|
216 |
def __init__(self, temperature, max_tokens):
|
217 |
-
|
218 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "08_reasoner.txt")
|
219 |
-
self.system_prompt = ""
|
220 |
-
with open(system_prompt_path, "r") as file:
|
221 |
-
self.system_prompt = file.read().strip()
|
222 |
-
# Define the LLM and agent
|
223 |
-
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
224 |
-
self.agent = AgentWorkflow.setup_agent(llm=llm)
|
225 |
-
self.ctx = Context(self.agent)
|
226 |
-
|
227 |
-
async def query(self, question: str) -> str:
|
228 |
-
"""
|
229 |
-
Asynchronously queries the agent with a given question and returns the response.
|
230 |
-
|
231 |
-
Args:
|
232 |
-
question (str): The question to be sent to the agent.
|
233 |
-
|
234 |
-
Returns:
|
235 |
-
str: The response from the agent as a string.
|
236 |
-
"""
|
237 |
-
response = await self.agent.run(question, ctx=self.ctx)
|
238 |
-
response = str(response)
|
239 |
-
return response
|
240 |
|
241 |
-
def
|
242 |
-
|
243 |
-
Retrieves the system prompt.
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
"""
|
248 |
-
return self.system_prompt
|
249 |
-
|
250 |
-
def clear_context(self):
|
251 |
-
"""
|
252 |
-
Clears the current context of the agent, resetting any conversation history.
|
253 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
254 |
-
"""
|
255 |
-
self.ctx = Context(self.agent)
|
256 |
|
257 |
|
258 |
-
class ImageHandler:
|
259 |
def __init__(self, temperature, max_tokens):
|
260 |
-
|
261 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "09_image_handler.txt")
|
262 |
-
self.system_prompt = ""
|
263 |
-
with open(system_prompt_path, "r") as file:
|
264 |
-
self.system_prompt = file.read().strip()
|
265 |
-
pass
|
266 |
-
|
267 |
-
def get_system_prompt(self) -> str:
|
268 |
-
"""
|
269 |
-
Retrieves the system prompt.
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
"""
|
274 |
-
return self.system_prompt
|
275 |
|
276 |
-
def
|
277 |
-
|
278 |
-
Clears the current context of the agent, resetting any conversation history.
|
279 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
280 |
-
"""
|
281 |
-
if hasattr(self, 'ctx') and hasattr(self, 'agent'):
|
282 |
-
self.ctx = Context(self.agent)
|
283 |
|
284 |
|
285 |
-
class VideoHandler:
|
286 |
def __init__(self, temperature, max_tokens):
|
287 |
-
|
288 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "10_video_handler.txt")
|
289 |
-
self.system_prompt = ""
|
290 |
-
with open(system_prompt_path, "r") as file:
|
291 |
-
self.system_prompt = file.read().strip()
|
292 |
-
# No implementation yet
|
293 |
-
pass
|
294 |
-
|
295 |
-
def get_system_prompt(self) -> str:
|
296 |
-
"""
|
297 |
-
Retrieves the system prompt.
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
"""
|
302 |
-
return self.system_prompt
|
303 |
|
304 |
-
def
|
305 |
-
|
306 |
-
Clears the current context of the agent, resetting any conversation history.
|
307 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
308 |
-
"""
|
309 |
-
if hasattr(self, 'ctx') and hasattr(self, 'agent'):
|
310 |
-
self.ctx = Context(self.agent)
|
311 |
|
312 |
|
313 |
-
class Solver:
|
314 |
def __init__(self, temperature, max_tokens):
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
self.encryption_expert = EncryptionExpert(temperature, max_tokens)
|
339 |
-
self.math_expert = MathExpert(temperature, max_tokens)
|
340 |
-
self.reasoner = Reasoner(temperature, max_tokens)
|
341 |
-
self.image_handler = ImageHandler(temperature, max_tokens)
|
342 |
-
self.video_handler = VideoHandler(temperature, max_tokens)
|
343 |
-
|
344 |
-
def get_system_prompt(self) -> str:
|
345 |
-
"""
|
346 |
-
Retrieves the system prompt.
|
347 |
-
|
348 |
-
Returns:
|
349 |
-
str: The system prompt string.
|
350 |
-
"""
|
351 |
-
return self.system_prompt
|
352 |
-
|
353 |
-
async def query(self, question: str) -> str:
|
354 |
-
"""
|
355 |
-
Asynchronously queries the agent with a given question and returns the response.
|
356 |
-
|
357 |
-
Args:
|
358 |
-
question (str): The question to be sent to the agent.
|
359 |
-
|
360 |
-
Returns:
|
361 |
-
str: The response from the agent as a string.
|
362 |
-
"""
|
363 |
-
response = await self.agent.run(question, ctx=self.ctx)
|
364 |
-
response = str(response)
|
365 |
-
return response
|
366 |
-
|
367 |
-
def clear_context(self):
|
368 |
-
"""
|
369 |
-
Clears the current context of the agent, resetting any conversation history.
|
370 |
-
This is useful when starting a new conversation or when the context needs to be refreshed.
|
371 |
-
Also clears the context of all tool agents.
|
372 |
-
"""
|
373 |
-
self.ctx = Context(self.agent)
|
374 |
-
# Clear context for all tool agents
|
375 |
-
self.summarizer.clear_context()
|
376 |
-
self.researcher.clear_context()
|
377 |
-
self.encryption_expert.clear_context()
|
378 |
-
self.math_expert.clear_context()
|
379 |
-
self.reasoner.clear_context()
|
380 |
-
self.image_handler.clear_context()
|
381 |
-
self.video_handler.clear_context()
|
382 |
-
|
383 |
-
async def call_summarizer(self, question: str) -> str:
|
384 |
-
return await self.summarizer.query(question)
|
385 |
-
|
386 |
-
async def call_researcher(self, question: str) -> str:
|
387 |
-
return await self.researcher.query(question)
|
388 |
-
|
389 |
-
async def call_encryption_expert(self, question: str) -> str:
|
390 |
-
return await self.encryption_expert.query(question)
|
391 |
-
|
392 |
-
async def call_math_expert(self, question: str) -> str:
|
393 |
-
return await self.math_expert.query(question)
|
394 |
-
|
395 |
-
async def call_reasoner(self, question: str) -> str:
|
396 |
-
return await self.reasoner.query(question)
|
397 |
-
|
398 |
-
async def call_image_handler(self, question: str) -> str:
|
399 |
-
# ImageHandler may not have a query method yet, but following the pattern
|
400 |
-
if hasattr(self.image_handler, 'query'):
|
401 |
-
return await self.image_handler.query(question)
|
402 |
-
return "Image handling is not implemented yet."
|
403 |
-
# TODO
|
404 |
-
|
405 |
-
async def call_video_handler(self, question: str) -> str:
|
406 |
-
# VideoHandler may not have a query method yet, but following the pattern
|
407 |
-
if hasattr(self.video_handler, 'query'):
|
408 |
-
return await self.video_handler.query(question)
|
409 |
-
return "Video handling is not implemented yet."
|
410 |
-
# TODO
|
411 |
|
412 |
|
413 |
# if __name__ == "__main__":
|
|
|
1 |
+
from typing import List
|
|
|
|
|
2 |
|
3 |
+
from itf_agent import IAgent
|
|
|
|
|
|
|
4 |
from toolbox import Toolbox
|
5 |
from args import Args
|
6 |
|
7 |
|
8 |
+
class Summarizer(IAgent):
|
9 |
def __init__(self, temperature, max_tokens):
|
10 |
+
super().__init__(temperature, max_tokens, "04_summarizer.txt", Args.primary_llm_interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def setup_tools(self) -> List:
|
13 |
"""
|
14 |
+
Abstract method to set up the tools.
|
15 |
+
This method must be overridden by subclasses to define custom tools this agent can use.
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
+
return []
|
|
|
|
|
18 |
|
19 |
+
def setup_slaves(self) -> List:
|
20 |
"""
|
21 |
+
Abstract method to set up the slave agents.
|
22 |
+
This method must be overridden by subclasses to define custom sub-agents this agent can use.
|
23 |
"""
|
24 |
+
return []
|
25 |
|
26 |
|
27 |
+
class Researcher(IAgent):
|
28 |
def __init__(self, temperature, max_tokens):
|
29 |
+
super().__init__(temperature, max_tokens, "05_researcher.txt", Args.primary_llm_interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def setup_tools(self) -> List:
|
32 |
+
return [Toolbox.web_search.duck_duck_go_tools]
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def setup_slaves(self) -> List:
|
35 |
+
return []
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
+
class EncryptionExpert(IAgent):
|
39 |
def __init__(self, temperature, max_tokens):
|
40 |
+
super().__init__(temperature, max_tokens, "06_encryption_expert.txt", Args.primary_llm_interface)
|
41 |
+
|
42 |
+
def setup_tools(self) -> List:
|
43 |
+
return [
|
|
|
|
|
|
|
|
|
|
|
44 |
Toolbox.encryption.base64_encode,
|
45 |
Toolbox.encryption.base64_decode,
|
46 |
Toolbox.encryption.caesar_cipher_encode,
|
47 |
Toolbox.encryption.caesar_cipher_decode,
|
48 |
Toolbox.encryption.reverse_string
|
49 |
# TODO: Add more encryption tools
|
50 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def setup_slaves(self) -> List:
|
53 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
+
class MathExpert(IAgent):
|
57 |
def __init__(self, temperature, max_tokens):
|
58 |
+
super().__init__(temperature, max_tokens, "07_math_expert.txt", Args.primary_llm_interface)
|
59 |
+
|
60 |
+
def setup_tools(self) -> List:
|
61 |
+
return [
|
|
|
|
|
|
|
|
|
|
|
62 |
Toolbox.math.symbolic_calc,
|
63 |
Toolbox.math.unit_converter,
|
64 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
def setup_slaves(self) -> List:
|
67 |
+
reasoner = Reasoner(self.temperature, self.max_tokens)
|
68 |
+
return [reasoner]
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
class Reasoner(IAgent):
|
|
|
72 |
def __init__(self, temperature, max_tokens):
|
73 |
+
super().__init__(temperature, max_tokens, "08_reasoner.txt", Args.primary_llm_interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def setup_tools(self) -> List:
|
76 |
+
return []
|
|
|
77 |
|
78 |
+
def setup_slaves(self) -> List:
|
79 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
+
class ImageHandler(IAgent):
|
83 |
def __init__(self, temperature, max_tokens):
|
84 |
+
super().__init__(temperature, max_tokens, "09_image_handler.txt", Args.vlm_interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
def setup_tools(self) -> List:
|
87 |
+
return []
|
|
|
|
|
88 |
|
89 |
+
def setup_slaves(self) -> List:
|
90 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
+
class VideoHandler(IAgent):
|
94 |
def __init__(self, temperature, max_tokens):
|
95 |
+
super().__init__(temperature, max_tokens, "10_video_handler.txt", Args.vlm_interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
def setup_tools(self) -> List:
|
98 |
+
return []
|
|
|
|
|
99 |
|
100 |
+
def setup_slaves(self) -> List:
|
101 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
+
class Solver(IAgent):
|
105 |
def __init__(self, temperature, max_tokens):
|
106 |
+
super().__init__(temperature, max_tokens, "03_solver.txt", Args.primary_llm_interface)
|
107 |
+
|
108 |
+
def setup_tools(self) -> List:
|
109 |
+
return []
|
110 |
+
|
111 |
+
def setup_slaves(self) -> List:
|
112 |
+
summarizer = Summarizer(self.temperature, self.max_tokens)
|
113 |
+
researcher = Researcher(self.temperature, self.max_tokens)
|
114 |
+
encryption_expert = EncryptionExpert(self.temperature, self.max_tokens)
|
115 |
+
math_expert = MathExpert(self.temperature, self.max_tokens)
|
116 |
+
reasoner = Reasoner(self.temperature, self.max_tokens)
|
117 |
+
image_handler = ImageHandler(self.temperature, self.max_tokens)
|
118 |
+
video_handler = VideoHandler(self.temperature, self.max_tokens)
|
119 |
+
|
120 |
+
return [
|
121 |
+
summarizer,
|
122 |
+
researcher,
|
123 |
+
encryption_expert,
|
124 |
+
math_expert,
|
125 |
+
reasoner,
|
126 |
+
image_handler,
|
127 |
+
video_handler
|
128 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
|
131 |
# if __name__ == "__main__":
|