Spaces:
Sleeping
Sleeping
defining the Solver's agents (part 1)
Browse files
solver.py
CHANGED
@@ -10,26 +10,37 @@ from toolbox import Toolbox
|
|
10 |
from args import Args
|
11 |
|
12 |
|
13 |
-
class
|
14 |
def __init__(self, temperature, max_tokens):
|
15 |
-
|
|
|
16 |
self.system_prompt = ""
|
17 |
with open(system_prompt_path, "r") as file:
|
18 |
self.system_prompt = file.read().strip()
|
|
|
19 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
20 |
-
self.agent = AgentWorkflow.
|
21 |
-
[
|
22 |
-
Toolbox.math.symbolic_calc,
|
23 |
-
Toolbox.math.unit_converter,
|
24 |
-
],
|
25 |
-
llm=llm
|
26 |
-
)
|
27 |
self.ctx = Context(self.agent)
|
28 |
|
29 |
-
def get_system_prompt(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return self.system_prompt
|
31 |
|
32 |
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
response = await self.agent.run(question, ctx=self.ctx)
|
34 |
response = str(response)
|
35 |
return response
|
@@ -42,42 +53,96 @@ class Solver:
|
|
42 |
self.ctx = Context(self.agent)
|
43 |
|
44 |
|
45 |
-
class
|
46 |
def __init__(self, temperature, max_tokens):
|
47 |
-
|
|
|
48 |
self.system_prompt = ""
|
49 |
with open(system_prompt_path, "r") as file:
|
50 |
self.system_prompt = file.read().strip()
|
|
|
51 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
52 |
-
self.agent = AgentWorkflow.
|
|
|
|
|
|
|
53 |
self.ctx = Context(self.agent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
response = await self.agent.run(question, ctx=self.ctx)
|
57 |
response = str(response)
|
58 |
return response
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
class
|
62 |
def __init__(self, temperature, max_tokens):
|
63 |
-
|
|
|
64 |
self.system_prompt = ""
|
65 |
with open(system_prompt_path, "r") as file:
|
66 |
self.system_prompt = file.read().strip()
|
|
|
67 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
68 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
69 |
[
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
],
|
73 |
llm=llm
|
74 |
)
|
75 |
self.ctx = Context(self.agent)
|
|
|
|
|
|
|
76 |
|
77 |
-
def get_system_prompt(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return self.system_prompt
|
79 |
|
80 |
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
response = await self.agent.run(question, ctx=self.ctx)
|
82 |
response = str(response)
|
83 |
return response
|
@@ -86,137 +151,264 @@ class MathExpert:
|
|
86 |
"""
|
87 |
Clears the current context of the agent, resetting any conversation history.
|
88 |
This is useful when starting a new conversation or when the context needs to be refreshed.
|
|
|
89 |
"""
|
90 |
self.ctx = Context(self.agent)
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
-
class
|
94 |
def __init__(self, temperature, max_tokens):
|
95 |
-
|
|
|
96 |
self.system_prompt = ""
|
97 |
with open(system_prompt_path, "r") as file:
|
98 |
self.system_prompt = file.read().strip()
|
|
|
99 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
100 |
-
|
101 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
102 |
-
|
|
|
|
|
|
|
103 |
llm=llm
|
104 |
)
|
105 |
self.ctx = Context(self.agent)
|
|
|
|
|
106 |
|
107 |
-
def get_system_prompt(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return self.system_prompt
|
109 |
|
110 |
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
response = await self.agent.run(question, ctx=self.ctx)
|
112 |
response = str(response)
|
113 |
return response
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
class
|
117 |
def __init__(self, temperature, max_tokens):
|
118 |
-
|
|
|
119 |
self.system_prompt = ""
|
120 |
with open(system_prompt_path, "r") as file:
|
121 |
self.system_prompt = file.read().strip()
|
|
|
122 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
123 |
-
|
124 |
-
self.agent = AgentWorkflow.from_tools_or_functions(
|
125 |
-
[
|
126 |
-
Toolbox.encryption.base64_encode,
|
127 |
-
Toolbox.encryption.base64_decode,
|
128 |
-
Toolbox.encryption.caesar_cipher_encode,
|
129 |
-
Toolbox.encryption.caesar_cipher_decode,
|
130 |
-
Toolbox.encryption.reverse_string
|
131 |
-
],
|
132 |
-
llm=llm
|
133 |
-
)
|
134 |
self.ctx = Context(self.agent)
|
135 |
-
|
136 |
-
def get_system_prompt(self):
|
137 |
-
return self.system_prompt
|
138 |
|
139 |
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
response = await self.agent.run(question, ctx=self.ctx)
|
141 |
response = str(response)
|
142 |
return response
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
class ImageHandler:
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
class VideoHandler:
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
class Solver_2:
|
156 |
|
|
|
157 |
def __init__(self, temperature, max_tokens):
|
158 |
-
|
159 |
-
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "
|
160 |
self.system_prompt = ""
|
161 |
with open(system_prompt_path, "r") as file:
|
162 |
self.system_prompt = file.read().strip()
|
|
|
163 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
164 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
165 |
[
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
],
|
169 |
llm=llm
|
170 |
)
|
171 |
self.ctx = Context(self.agent)
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
self.
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
response = await self.query("I noticed the final_answer is an empty string. Have you forgot to set the final_answer ?")
|
181 |
-
return self.final_answer
|
182 |
-
|
183 |
-
def get_system_prompt(self):
|
184 |
-
return self.system_prompt
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
return response
|
194 |
-
|
195 |
-
def set_final_answer(self, final_answer: str) -> str:
|
196 |
"""
|
197 |
-
|
198 |
|
199 |
Args:
|
200 |
-
|
201 |
|
202 |
Returns:
|
203 |
-
str: The
|
204 |
"""
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from args import Args
|
11 |
|
12 |
|
13 |
+
class Summarizer:
|
14 |
def __init__(self, temperature, max_tokens):
|
15 |
+
# Load the system prompt from a file
|
16 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "04_summarizer.txt")
|
17 |
self.system_prompt = ""
|
18 |
with open(system_prompt_path, "r") as file:
|
19 |
self.system_prompt = file.read().strip()
|
20 |
+
# Define the LLM and agent
|
21 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
22 |
+
self.agent = AgentWorkflow.setup_agent(llm=llm)
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.ctx = Context(self.agent)
|
24 |
|
25 |
+
def get_system_prompt(self) -> str:
|
26 |
+
"""
|
27 |
+
Retrieves the system prompt.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
str: The system prompt string.
|
31 |
+
"""
|
32 |
return self.system_prompt
|
33 |
|
34 |
async def query(self, question: str) -> str:
|
35 |
+
"""
|
36 |
+
Asynchronously queries the agent with a given question and returns the response.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
question (str): The question to be sent to the agent.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
str: The response from the agent as a string.
|
43 |
+
"""
|
44 |
response = await self.agent.run(question, ctx=self.ctx)
|
45 |
response = str(response)
|
46 |
return response
|
|
|
53 |
self.ctx = Context(self.agent)
|
54 |
|
55 |
|
56 |
+
class Researcher:
|
57 |
def __init__(self, temperature, max_tokens):
|
58 |
+
# Load the system prompt from a file
|
59 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "05_researcher.txt")
|
60 |
self.system_prompt = ""
|
61 |
with open(system_prompt_path, "r") as file:
|
62 |
self.system_prompt = file.read().strip()
|
63 |
+
# Define the LLM and agent
|
64 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
65 |
+
self.agent = AgentWorkflow.from_tools_or_functions(
|
66 |
+
Toolbox.web_search.duck_duck_go_tools,
|
67 |
+
llm=llm
|
68 |
+
)
|
69 |
self.ctx = Context(self.agent)
|
70 |
+
|
71 |
+
def get_system_prompt(self) -> str:
|
72 |
+
"""
|
73 |
+
Retrieves the system prompt.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
str: The system prompt string.
|
77 |
+
"""
|
78 |
+
return self.system_prompt
|
79 |
|
80 |
async def query(self, question: str) -> str:
|
81 |
+
"""
|
82 |
+
Asynchronously queries the agent with a given question and returns the response.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
question (str): The question to be sent to the agent.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
str: The response from the agent as a string.
|
89 |
+
"""
|
90 |
response = await self.agent.run(question, ctx=self.ctx)
|
91 |
response = str(response)
|
92 |
return response
|
93 |
|
94 |
+
def clear_context(self):
|
95 |
+
"""
|
96 |
+
Clears the current context of the agent, resetting any conversation history.
|
97 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
98 |
+
"""
|
99 |
+
self.ctx = Context(self.agent)
|
100 |
+
|
101 |
|
102 |
+
class EncryptionExpert:
|
103 |
def __init__(self, temperature, max_tokens):
|
104 |
+
# Load the system prompt from a file
|
105 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "06_encryption_expert.txt")
|
106 |
self.system_prompt = ""
|
107 |
with open(system_prompt_path, "r") as file:
|
108 |
self.system_prompt = file.read().strip()
|
109 |
+
# Define the LLM and agent
|
110 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
111 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
112 |
[
|
113 |
+
Toolbox.encryption.base64_encode,
|
114 |
+
Toolbox.encryption.base64_decode,
|
115 |
+
Toolbox.encryption.caesar_cipher_encode,
|
116 |
+
Toolbox.encryption.caesar_cipher_decode,
|
117 |
+
Toolbox.encryption.reverse_string
|
118 |
+
# TODO: Add more encryption tools
|
119 |
],
|
120 |
llm=llm
|
121 |
)
|
122 |
self.ctx = Context(self.agent)
|
123 |
+
# Initialize the tool agents
|
124 |
+
self.math_expert = MathExpert(temperature, max_tokens)
|
125 |
+
self.reasoner = Reasoner(temperature, max_tokens)
|
126 |
|
127 |
+
def get_system_prompt(self) -> str:
|
128 |
+
"""
|
129 |
+
Retrieves the system prompt.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
str: The system prompt string.
|
133 |
+
"""
|
134 |
return self.system_prompt
|
135 |
|
136 |
async def query(self, question: str) -> str:
|
137 |
+
"""
|
138 |
+
Asynchronously queries the agent with a given question and returns the response.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
question (str): The question to be sent to the agent.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
str: The response from the agent as a string.
|
145 |
+
"""
|
146 |
response = await self.agent.run(question, ctx=self.ctx)
|
147 |
response = str(response)
|
148 |
return response
|
|
|
151 |
"""
|
152 |
Clears the current context of the agent, resetting any conversation history.
|
153 |
This is useful when starting a new conversation or when the context needs to be refreshed.
|
154 |
+
Also clears the context of any tool agents.
|
155 |
"""
|
156 |
self.ctx = Context(self.agent)
|
157 |
+
# Clear context for tool agents
|
158 |
+
self.math_expert.clear_context()
|
159 |
+
self.reasoner.clear_context()
|
160 |
|
161 |
|
162 |
+
class MathExpert:
|
163 |
def __init__(self, temperature, max_tokens):
|
164 |
+
# Load the system prompt from a file
|
165 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "07_math_expert.txt")
|
166 |
self.system_prompt = ""
|
167 |
with open(system_prompt_path, "r") as file:
|
168 |
self.system_prompt = file.read().strip()
|
169 |
+
# Define the LLM and agent
|
170 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
|
|
171 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
172 |
+
[
|
173 |
+
Toolbox.math.symbolic_calc,
|
174 |
+
Toolbox.math.unit_converter,
|
175 |
+
],
|
176 |
llm=llm
|
177 |
)
|
178 |
self.ctx = Context(self.agent)
|
179 |
+
# Initialize the tool agents
|
180 |
+
self.reasoner = Reasoner(temperature, max_tokens)
|
181 |
|
182 |
+
def get_system_prompt(self) -> str:
|
183 |
+
"""
|
184 |
+
Retrieves the system prompt.
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
str: The system prompt string.
|
188 |
+
"""
|
189 |
return self.system_prompt
|
190 |
|
191 |
async def query(self, question: str) -> str:
|
192 |
+
"""
|
193 |
+
Asynchronously queries the agent with a given question and returns the response.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
question (str): The question to be sent to the agent.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
str: The response from the agent as a string.
|
200 |
+
"""
|
201 |
response = await self.agent.run(question, ctx=self.ctx)
|
202 |
response = str(response)
|
203 |
return response
|
204 |
|
205 |
+
def clear_context(self):
|
206 |
+
"""
|
207 |
+
Clears the current context of the agent, resetting any conversation history.
|
208 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
209 |
+
Also clears the context of any tool agents.
|
210 |
+
"""
|
211 |
+
self.ctx = Context(self.agent)
|
212 |
+
self.reasoner.clear_context()
|
213 |
+
|
214 |
|
215 |
+
class Reasoner:
|
216 |
def __init__(self, temperature, max_tokens):
|
217 |
+
# Load the system prompt from a file
|
218 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "08_reasoner.txt")
|
219 |
self.system_prompt = ""
|
220 |
with open(system_prompt_path, "r") as file:
|
221 |
self.system_prompt = file.read().strip()
|
222 |
+
# Define the LLM and agent
|
223 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
224 |
+
self.agent = AgentWorkflow.setup_agent(llm=llm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
self.ctx = Context(self.agent)
|
|
|
|
|
|
|
226 |
|
227 |
async def query(self, question: str) -> str:
|
228 |
+
"""
|
229 |
+
Asynchronously queries the agent with a given question and returns the response.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
question (str): The question to be sent to the agent.
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
str: The response from the agent as a string.
|
236 |
+
"""
|
237 |
response = await self.agent.run(question, ctx=self.ctx)
|
238 |
response = str(response)
|
239 |
return response
|
240 |
|
241 |
+
def get_system_prompt(self) -> str:
|
242 |
+
"""
|
243 |
+
Retrieves the system prompt.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
str: The system prompt string.
|
247 |
+
"""
|
248 |
+
return self.system_prompt
|
249 |
+
|
250 |
+
def clear_context(self):
|
251 |
+
"""
|
252 |
+
Clears the current context of the agent, resetting any conversation history.
|
253 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
254 |
+
"""
|
255 |
+
self.ctx = Context(self.agent)
|
256 |
+
|
257 |
|
258 |
class ImageHandler:
|
259 |
+
def __init__(self, temperature, max_tokens):
|
260 |
+
# Load the system prompt from a file
|
261 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "09_image_handler.txt")
|
262 |
+
self.system_prompt = ""
|
263 |
+
with open(system_prompt_path, "r") as file:
|
264 |
+
self.system_prompt = file.read().strip()
|
265 |
+
pass
|
266 |
+
|
267 |
+
def get_system_prompt(self) -> str:
|
268 |
+
"""
|
269 |
+
Retrieves the system prompt.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
str: The system prompt string.
|
273 |
+
"""
|
274 |
+
return self.system_prompt
|
275 |
+
|
276 |
+
def clear_context(self):
|
277 |
+
"""
|
278 |
+
Clears the current context of the agent, resetting any conversation history.
|
279 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
280 |
+
"""
|
281 |
+
if hasattr(self, 'ctx') and hasattr(self, 'agent'):
|
282 |
+
self.ctx = Context(self.agent)
|
283 |
+
|
284 |
|
285 |
class VideoHandler:
|
286 |
+
def __init__(self, temperature, max_tokens):
|
287 |
+
# Load the system prompt from a file
|
288 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "10_video_handler.txt")
|
289 |
+
self.system_prompt = ""
|
290 |
+
with open(system_prompt_path, "r") as file:
|
291 |
+
self.system_prompt = file.read().strip()
|
292 |
+
# No implementation yet
|
293 |
+
pass
|
294 |
+
|
295 |
+
def get_system_prompt(self) -> str:
|
296 |
+
"""
|
297 |
+
Retrieves the system prompt.
|
298 |
|
299 |
+
Returns:
|
300 |
+
str: The system prompt string.
|
301 |
+
"""
|
302 |
+
return self.system_prompt
|
303 |
|
304 |
+
def clear_context(self):
|
305 |
+
"""
|
306 |
+
Clears the current context of the agent, resetting any conversation history.
|
307 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
308 |
+
"""
|
309 |
+
if hasattr(self, 'ctx') and hasattr(self, 'agent'):
|
310 |
+
self.ctx = Context(self.agent)
|
311 |
|
|
|
312 |
|
313 |
+
class Solver:
|
314 |
def __init__(self, temperature, max_tokens):
|
315 |
+
# Load the system prompt from a file
|
316 |
+
system_prompt_path = os.path.join(os.getcwd(), "system_prompts", "03_solver.txt")
|
317 |
self.system_prompt = ""
|
318 |
with open(system_prompt_path, "r") as file:
|
319 |
self.system_prompt = file.read().strip()
|
320 |
+
# Define the LLM and agent
|
321 |
llm = LLMFactory.create(Args.primary_llm_interface, self.system_prompt, temperature, max_tokens)
|
322 |
self.agent = AgentWorkflow.from_tools_or_functions(
|
323 |
[
|
324 |
+
self.call_summarizer,
|
325 |
+
self.call_researcher,
|
326 |
+
self.call_encryption_expert,
|
327 |
+
self.call_math_expert,
|
328 |
+
self.call_reasoner,
|
329 |
+
self.call_image_handler,
|
330 |
+
self.call_video_handler
|
331 |
],
|
332 |
llm=llm
|
333 |
)
|
334 |
self.ctx = Context(self.agent)
|
335 |
+
# Initialize the tool agents
|
336 |
+
self.summarizer = Summarizer(temperature, max_tokens)
|
337 |
+
self.researcher = Researcher(temperature, max_tokens)
|
338 |
+
self.encryption_expert = EncryptionExpert(temperature, max_tokens)
|
339 |
+
self.math_expert = MathExpert(temperature, max_tokens)
|
340 |
+
self.reasoner = Reasoner(temperature, max_tokens)
|
341 |
+
self.image_handler = ImageHandler(temperature, max_tokens)
|
342 |
+
self.video_handler = VideoHandler(temperature, max_tokens)
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
def get_system_prompt(self) -> str:
|
345 |
+
"""
|
346 |
+
Retrieves the system prompt.
|
347 |
|
348 |
+
Returns:
|
349 |
+
str: The system prompt string.
|
350 |
+
"""
|
351 |
+
return self.system_prompt
|
352 |
|
353 |
+
async def query(self, question: str) -> str:
|
|
|
|
|
|
|
354 |
"""
|
355 |
+
Asynchronously queries the agent with a given question and returns the response.
|
356 |
|
357 |
Args:
|
358 |
+
question (str): The question to be sent to the agent.
|
359 |
|
360 |
Returns:
|
361 |
+
str: The response from the agent as a string.
|
362 |
"""
|
363 |
+
response = await self.agent.run(question, ctx=self.ctx)
|
364 |
+
response = str(response)
|
365 |
+
return response
|
366 |
+
|
367 |
+
def clear_context(self):
|
368 |
+
"""
|
369 |
+
Clears the current context of the agent, resetting any conversation history.
|
370 |
+
This is useful when starting a new conversation or when the context needs to be refreshed.
|
371 |
+
Also clears the context of all tool agents.
|
372 |
+
"""
|
373 |
+
self.ctx = Context(self.agent)
|
374 |
+
# Clear context for all tool agents
|
375 |
+
self.summarizer.clear_context()
|
376 |
+
self.researcher.clear_context()
|
377 |
+
self.encryption_expert.clear_context()
|
378 |
+
self.math_expert.clear_context()
|
379 |
+
self.reasoner.clear_context()
|
380 |
+
self.image_handler.clear_context()
|
381 |
+
self.video_handler.clear_context()
|
382 |
+
|
383 |
+
async def call_summarizer(self, question: str) -> str:
|
384 |
+
return await self.summarizer.query(question)
|
385 |
+
|
386 |
+
async def call_researcher(self, question: str) -> str:
|
387 |
+
return await self.researcher.query(question)
|
388 |
+
|
389 |
+
async def call_encryption_expert(self, question: str) -> str:
|
390 |
+
return await self.encryption_expert.query(question)
|
391 |
+
|
392 |
+
async def call_math_expert(self, question: str) -> str:
|
393 |
+
return await self.math_expert.query(question)
|
394 |
+
|
395 |
+
async def call_reasoner(self, question: str) -> str:
|
396 |
+
return await self.reasoner.query(question)
|
397 |
+
|
398 |
+
async def call_image_handler(self, question: str) -> str:
|
399 |
+
# ImageHandler may not have a query method yet, but following the pattern
|
400 |
+
if hasattr(self.image_handler, 'query'):
|
401 |
+
return await self.image_handler.query(question)
|
402 |
+
return "Image handling is not implemented yet."
|
403 |
+
# TODO
|
404 |
+
|
405 |
+
async def call_video_handler(self, question: str) -> str:
|
406 |
+
# VideoHandler may not have a query method yet, but following the pattern
|
407 |
+
if hasattr(self.video_handler, 'query'):
|
408 |
+
return await self.video_handler.query(question)
|
409 |
+
return "Video handling is not implemented yet."
|
410 |
+
# TODO
|
411 |
+
|
412 |
+
|
413 |
+
# if __name__ == "__main__":
|
414 |
+
# pass
|