Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from alfred import Alfred | |
| from args import Args | |
| class Application: | |
| def __init__(self): | |
| self.space_id = os.getenv("SPACE_ID") | |
| self.username = None | |
| self.questions_url, self.submit_url = self._get_runtime_and_repo_urls() | |
| def _get_username(profile: gr.OAuthProfile | None): | |
| """Get profile username""" | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| return username | |
| else: | |
| print("User not logged in.") | |
| return None | |
| def _get_runtime_and_repo_urls(): | |
| """Determine HF Space Runtime URL and Repo URL""" | |
| api_url = Args.AppParams.DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| return questions_url, submit_url | |
| def _fetch_questions(self): | |
| """ | |
| Fetches questions from `questions_url`. | |
| Sends a GET request to retrieve and parse questions as JSON. Handles network, | |
| JSON decoding, and unexpected errors. | |
| Returns: | |
| tuple: (error_message: str or None, questions: list or None) | |
| Logs: | |
| - Progress, success, empty data, or errors. | |
| """ | |
| print(f"Fetching questions from: {self.questions_url}") | |
| response = None | |
| try: | |
| response = requests.get(self.questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| if response: | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| return questions_data | |
| def _run_agent(questions_data, agent): | |
| """ | |
| Runs the agent on a list of questions and collects results. | |
| Args: | |
| questions_data (list): List of question dictionaries with "task_id" and "question". | |
| agent (callable): Callable that processes a question and returns an answer. | |
| Returns: | |
| tuple: | |
| - results_log (list): Logs with "Task ID", "Question", and "Submitted Answer". | |
| - answers_payload (list): Payload with "task_id" and "submitted_answer". | |
| """ | |
| questions_limit = Args.AppParams.QUESTIONS_LIMIT | |
| if questions_limit > 0: | |
| questions_data = questions_data[:questions_limit] | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| print(f"SUBMITED_ANSWER: {submitted_answer}") | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| return results_log, answers_payload | |
| def _submit(self, answers_payload, submission_data, results_log): | |
| """ | |
| Submits answers to the specified URL and processes the response. | |
| Args: | |
| answers_payload (list): List of answers to submit. | |
| submission_data (dict): Payload for the POST request. | |
| results_log (list): Log of results to convert into a DataFrame. | |
| Returns: | |
| tuple: (status_message (str), results_df (pd.DataFrame)). | |
| Notes: | |
| - Sends a POST request to `self.submit_url` with `submission_data`. | |
| - Handles exceptions and provides error messages. | |
| """ | |
| print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}") | |
| try: | |
| if Args.AppParams.MOCK_SUBMISSION: | |
| app_username = self.username | |
| class MockResponse: | |
| status_code = 200 | |
| def json(self): | |
| return { | |
| "username": app_username, | |
| "score": 100, | |
| "correct_count": len(answers_payload), | |
| "total_attempted": len(answers_payload), | |
| "message": "Mock submission successful." | |
| } | |
| response = MockResponse() | |
| else: | |
| response = requests.post(self.submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| def eval_and_submit_all(self, profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the agent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| self.username = self._get_username(profile) | |
| if self.username is None: | |
| return "Please Login to Hugging Face with the button.", None | |
| # 1. Instantiate the Main Agent | |
| try: | |
| agent = Alfred() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{self.space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| questions_data = self._fetch_questions() | |
| # 3. Run your Agent | |
| results_log, answers_payload = self._run_agent(questions_data, agent) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": self.username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{self.username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| status_message, results_df = self._submit(answers_payload, submission_data, results_log) | |
| return status_message, results_df | |
| class UI: | |
| app = Application() | |
| def _check_space_host_and_id(cls): | |
| """Check for SPACE_HOST and SPACE_ID at startup for information""" | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| # Print repo URLs if SPACE_ID is found | |
| if space_id_startup: | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| def _build(cls): | |
| gr.Markdown("# Main Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=cls.app.eval_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| def launch(cls): | |
| """Build Gradio Interface using Blocks""" | |
| with gr.Blocks() as demo: | |
| cls._build() | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| cls._check_space_host_and_id() | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Main Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |
| UI.launch() | |