Spaces:
Runtime error
Runtime error
File size: 1,379 Bytes
43396c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import cv2
import numpy as np
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2,preprocess_input as mobilenet_v2_preprocess_input
model = tf.keras.models.load_model("saved_model/mdl_wts.hdf5")
### load file
uploaded_file = st.file_uploader("Choose a image file", type="jpg")
map_dict = {0: 'dog',
1: 'horse',
2: 'elephant',
3: 'butterfly',
4: 'chicken',
5: 'cat',
6: 'cow',
7: 'sheep',
8: 'spider',
9: 'squirrel'}
if uploaded_file is not None:
# Convert the file to an opencv image.
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
opencv_image = cv2.imdecode(file_bytes, 1)
opencv_image = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB)
resized = cv2.resize(opencv_image,(224,224))
# Now do something with the image! For example, let's display it:
st.image(opencv_image, channels="RGB")
resized = mobilenet_v2_preprocess_input(resized)
img_reshape = resized[np.newaxis,...]
Genrate_pred = st.button("Generate Prediction")
if Genrate_pred:
prediction = model.predict(img_reshape).argmax()
st.title("Predicted Label for the image is {}".format(map_dict [prediction])) |