File size: 7,271 Bytes
0ccc9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import os, csv


class PoseSample(object):
    def __init__(self, name, landmarks, class_name, embedding):
        self.name = name
        self.landmarks = landmarks
        self.class_name = class_name
        self.embedding = embedding


class PoseSampleOutlier(object):
    def __init__(self, sample, detected_class, all_classes):
        self.sample = sample
        self.detected_class = detected_class
        self.all_classes = all_classes


class PoseClassifier(object):
    """Classifies pose landmarks."""

    def __init__(
        self,
        pose_samples_folder,
        pose_embedder,
        file_extension="csv",
        file_separator=",",
        n_landmarks=33,
        n_dimensions=3,
        top_n_by_max_distance=30,
        top_n_by_mean_distance=10,
        axes_weights=(1.0, 1.0, 0.2),
    ):
        self._pose_embedder = pose_embedder
        self._n_landmarks = n_landmarks
        self._n_dimensions = n_dimensions
        self._top_n_by_max_distance = top_n_by_max_distance
        self._top_n_by_mean_distance = top_n_by_mean_distance
        self._axes_weights = axes_weights

        self._pose_samples = self._load_pose_samples(
            pose_samples_folder,
            file_extension,
            file_separator,
            n_landmarks,
            n_dimensions,
            pose_embedder,
        )

    def _load_pose_samples(
        self,
        pose_samples_folder,
        file_extension,
        file_separator,
        n_landmarks,
        n_dimensions,
        pose_embedder,
    ):
        """Loads pose samples from a given folder.

        Required folder structure:
          neutral_standing.csv
          pushups_down.csv
          pushups_up.csv
          squats_down.csv
          ...

        Required CSV structure:
          sample_00001,x1,y1,z1,x2,y2,z2,....
          sample_00002,x1,y1,z1,x2,y2,z2,....
          ...
        """
        # Each file in the folder represents one pose class.
        file_names = [
            name
            for name in os.listdir(pose_samples_folder)
            if name.endswith(file_extension)
        ]

        pose_samples = []
        for file_name in file_names:
            # Use file name as pose class name.
            class_name = file_name[: -(len(file_extension) + 1)]

            # Parse CSV.
            with open(os.path.join(pose_samples_folder, file_name)) as csv_file:
                csv_reader = csv.reader(csv_file, delimiter=file_separator)
                for row in csv_reader:
                    assert (
                        len(row) == n_landmarks * n_dimensions + 1
                    ), "Wrong number of values: {}".format(len(row))
                    landmarks = np.array(row[1:], np.float32).reshape(
                        [n_landmarks, n_dimensions]
                    )
                    pose_samples.append(
                        PoseSample(
                            name=row[0],
                            landmarks=landmarks,
                            class_name=class_name,
                            embedding=pose_embedder(landmarks),
                        )
                    )

        return pose_samples

    def find_pose_sample_outliers(self):
        """Classifies each sample against the entire database."""
        # Find outliers in target poses
        outliers = []
        for sample in self._pose_samples:
            # Find nearest poses for the target one.
            pose_landmarks = sample.landmarks.copy()
            pose_classification = self.__call__(pose_landmarks)
            class_names = [
                class_name
                for class_name, count in pose_classification.items()
                if count == max(pose_classification.values())
            ]

            # Sample is an outlier if nearest poses have different class or more than
            # one pose class is detected as nearest.
            if sample.class_name not in class_names or len(class_names) != 1:
                outliers.append(
                    PoseSampleOutlier(sample, class_names, pose_classification)
                )

        return outliers

    def __call__(self, pose_landmarks):
        """Classifies given pose.

        Classification is done in two stages:
          * First we pick top-N samples by MAX distance. It allows to remove samples
            that are almost the same as given pose, but has few joints bent in the
            other direction.
          * Then we pick top-N samples by MEAN distance. After outliers are removed
            on a previous step, we can pick samples that are closes on average.

        Args:
          pose_landmarks: NumPy array with 3D landmarks of shape (N, 3).

        Returns:
          Dictionary with count of nearest pose samples from the database. Sample:
            {
              'pushups_down': 8,
              'pushups_up': 2,
            }
        """
        # Check that provided and target poses have the same shape.
        assert pose_landmarks.shape == (
            self._n_landmarks,
            self._n_dimensions,
        ), "Unexpected shape: {}".format(pose_landmarks.shape)

        # Get given pose embedding.
        pose_embedding = self._pose_embedder(pose_landmarks)
        flipped_pose_embedding = self._pose_embedder(
            pose_landmarks * np.array([-1, 1, 1])
        )

        # Filter by max distance.
        #
        # That helps to remove outliers - poses that are almost the same as the
        # given one, but has one joint bent into another direction and actually
        # represnt a different pose class.
        max_dist_heap = []
        for sample_idx, sample in enumerate(self._pose_samples):
            max_dist = min(
                np.max(np.abs(sample.embedding - pose_embedding) * self._axes_weights),
                np.max(
                    np.abs(sample.embedding - flipped_pose_embedding)
                    * self._axes_weights
                ),
            )
            max_dist_heap.append([max_dist, sample_idx])

        max_dist_heap = sorted(max_dist_heap, key=lambda x: x[0])
        max_dist_heap = max_dist_heap[: self._top_n_by_max_distance]

        # Filter by mean distance.
        #
        # After removing outliers we can find the nearest pose by mean distance.
        mean_dist_heap = []
        for _, sample_idx in max_dist_heap:
            sample = self._pose_samples[sample_idx]
            mean_dist = min(
                np.mean(np.abs(sample.embedding - pose_embedding) * self._axes_weights),
                np.mean(
                    np.abs(sample.embedding - flipped_pose_embedding)
                    * self._axes_weights
                ),
            )
            mean_dist_heap.append([mean_dist, sample_idx])

        mean_dist_heap = sorted(mean_dist_heap, key=lambda x: x[0])
        mean_dist_heap = mean_dist_heap[: self._top_n_by_mean_distance]

        # Collect results into map: (class_name -> n_samples)
        class_names = [
            self._pose_samples[sample_idx].class_name
            for _, sample_idx in mean_dist_heap
        ]
        result = {
            class_name: class_names.count(class_name) for class_name in set(class_names)
        }

        return result