Spaces:
Sleeping
Sleeping
File size: 7,411 Bytes
1f7d4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# Uncomment if you don't have the following modules\n",
"#pip install -qq gradio\n",
"#pip install -qq torch\n",
"#pip install -qq PIL\n",
"#pip install -qq torchvision"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from PIL import Image\n",
"import torch\n",
"import torchvision\n",
"import torchvision.transforms as transforms\n",
"from utils import transformer, tensor_to_img\n",
"from network import Style_Transfer_Network\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"device = \"cpu\"\n",
"if torch.cuda.is_available(): device = \"cuda\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
" warnings.warn(\n",
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG19_Weights.IMAGENET1K_V1`. You can also use `weights=VGG19_Weights.DEFAULT` to get the most up-to-date weights.\n",
" warnings.warn(msg)\n",
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.\n",
" warnings.warn(msg)\n"
]
},
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#import gradio as gr\n",
"check_point = torch.load('check_point1_0.pth', map_location = device)\n",
"transfer_network = Style_Transfer_Network().to(device)\n",
"transfer_network.load_state_dict(check_point['state_dict'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"Running on public URL: https://b4e9024bf7c14725c6.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://b4e9024bf7c14725c6.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None):\n",
" transform = transformer(imsize = 512)\n",
"\n",
" content = transform(content_img).unsqueeze(0).to(device)\n",
"\n",
" iw = [iw_1, iw_2, iw_3]\n",
" interpolation_weights = [i/ sum(iw) for i in iw]\n",
"\n",
" style_imgs = [style_img_1, style_img_2, style_img_3]\n",
" styles = []\n",
" for style_img in style_imgs:\n",
" if style_img is not None:\n",
" styles.append(transform(style_img).unsqueeze(0).to(device))\n",
" if preserve_color == \"None\": preserve_color = None\n",
" elif preserve_color == \"Whitening & Coloring\": preserve_color = \"whiten_and_color\"\n",
" elif preserve_color == \"Histogram matching\": preserve_color = \"histogram_matching\"\n",
" with torch.no_grad():\n",
" stylized_img = transfer_network(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color)\n",
" return tensor_to_img(stylized_img)\n",
"\n",
"title = \"Artistic Style Transfer\"\n",
"\n",
"content_img = gr.components.Image(label=\"Content image\", type = \"pil\")\n",
"\n",
"style_img_1 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
"iw_1 = gr.components.Slider(0., 1., label = \"Style 1 interpolation\")\n",
"style_img_2 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
"iw_2 = gr.components.Slider(0., 1., label = \"Style 2 interpolation\")\n",
"style_img_3 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
"iw_3 = gr.components.Slider(0., 1., label = \"Style 3 interpolation\")\n",
"style_strength = gr.components.Slider(0., 1., label = \"Adjust style strength\")\n",
"preserve_color = gr.components.Dropdown([\"None\", \"Whitening & Coloring\", \"Histogram matching\"], label = \"Choose color preserving mode\")\n",
"\n",
"interface = gr.Interface(fn = style_transfer,\n",
" inputs = [content_img,\n",
" style_strength,\n",
" style_img_1,\n",
" iw_1,\n",
" style_img_2,\n",
" iw_2,\n",
" style_img_3,\n",
" iw_3,\n",
" preserve_color],\n",
" outputs = gr.components.Image(),\n",
" title = title,\n",
" \n",
" )\n",
"interface.queue()\n",
"interface.launch(share = True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|