File size: 22,731 Bytes
44240fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import gradio as gr
import pandas as pd
from datasets import load_dataset
import time
from typing import Dict, List, Tuple
from config import ModelManager

class MathsBenchmarkApp:
    def __init__(self):
        """Initialise the Mathematics Benchmark application."""
        self.dataset = None
        self.df = None
        self.model_manager = ModelManager()
        self.load_dataset()
    
    def load_dataset(self) -> None:
        """Load the MathsBench dataset from HuggingFace."""
        try:
            self.dataset = load_dataset("0xnu/maths_bench", split="train")
            self.df = pd.DataFrame(self.dataset)
            print(f"Dataset loaded successfully: {len(self.df)} questions")
        except Exception as e:
            print(f"Error loading dataset: {e}")
            self.df = pd.DataFrame()
    
    def setup_api_provider(self, provider_name: str, api_key: str) -> Tuple[bool, str]:
        """Setup API provider with key."""
        return self.model_manager.setup_provider(provider_name, api_key)
    
    def get_filtered_data(self, category: str = "All", difficulty: str = "All") -> pd.DataFrame:
        """Filter dataset based on category and difficulty."""
        if self.df.empty:
            return pd.DataFrame()
        
        filtered_df = self.df.copy()
        
        if category != "All":
            filtered_df = filtered_df[filtered_df['category'] == category]
        
        if difficulty != "All":
            filtered_df = filtered_df[filtered_df['difficulty'] == difficulty]
        
        return filtered_df
    
    def create_prompt_for_question(self, question_data: Dict) -> str:
        """Create a structured prompt for the model."""
        prompt = f"""You are an expert mathematician. Solve this question and select the correct answer from the given options.

Question: {question_data['question']}

Available options:
A) {question_data['option_a']}
B) {question_data['option_b']}
C) {question_data['option_c']}
D) {question_data['option_d']}

Instructions:
1. Work through the problem step by step
2. Compare your result with each option
3. Select the option that matches your calculated answer
4. Respond with only the letter of your chosen answer

Your response must end with: "My final answer is: [LETTER]"

Example format:
First I'll solve... [working]
Checking the options... 
My final answer is: B"""
        
        return prompt
    
    def evaluate_single_question(self, question_id: int, model: str) -> Dict:
        """Evaluate a single question using the specified model."""
        if not self.model_manager.get_configured_providers():
            return {"error": "No API providers configured"}
        
        question_data = self.df[self.df['question_id'] == question_id].iloc[0].to_dict()
        prompt = self.create_prompt_for_question(question_data)
        
        try:
            ai_response = self.model_manager.generate_response(prompt, model, max_tokens=800)
            
            # Parse the response to extract the answer
            ai_answer = self.extract_answer_from_response(ai_response)
            
            # Convert correct answer to letter format if needed
            correct_answer_letter = self.convert_answer_to_letter(question_data)
            
            is_correct = ai_answer == correct_answer_letter
            
            return {
                "question_id": question_id,
                "question": question_data['question'],
                "category": question_data['category'],
                "difficulty": question_data['difficulty'],
                "correct_answer": question_data['correct_answer'],
                "correct_answer_letter": correct_answer_letter,
                "ai_answer": ai_answer,
                "is_correct": is_correct,
                "ai_response": ai_response,
                "model": model,
                "options": {
                    "A": question_data['option_a'],
                    "B": question_data['option_b'], 
                    "C": question_data['option_c'],
                    "D": question_data['option_d']
                }
            }
        except Exception as e:
            return {"error": f"API call failed: {str(e)}"}
    
    def convert_answer_to_letter(self, question_data: Dict) -> str:
        """Convert the correct answer to its corresponding letter option."""
        correct_answer = str(question_data['correct_answer']).strip()
        
        options = {
            'A': str(question_data['option_a']).strip(),
            'B': str(question_data['option_b']).strip(), 
            'C': str(question_data['option_c']).strip(),
            'D': str(question_data['option_d']).strip()
        }
        
        # Find which option matches the correct answer
        for letter, option_value in options.items():
            if correct_answer == option_value:
                return letter
        
        # If no exact match, try case-insensitive comparison
        correct_lower = correct_answer.lower()
        for letter, option_value in options.items():
            if correct_lower == option_value.lower():
                return letter
        
        # If still no match, return the first option as fallback
        return 'A'
    
    def extract_answer_from_response(self, response: str) -> str:
        """Extract the letter answer from AI response."""
        response_upper = response.upper()
        
        # Primary method: Look for "MY FINAL ANSWER IS: X" pattern
        if "MY FINAL ANSWER IS:" in response_upper:
            answer_part = response_upper.split("MY FINAL ANSWER IS:")[1].strip()
            for letter in ['A', 'B', 'C', 'D']:
                if letter in answer_part[:3]:  # Check first 3 chars after the phrase
                    return letter
        
        # Secondary method: Look for "ANSWER:" pattern
        if "ANSWER:" in response_upper:
            answer_part = response_upper.split("ANSWER:")[1].strip()
            for letter in ['A', 'B', 'C', 'D']:
                if letter in answer_part[:10]:
                    return letter
        
        # Tertiary method: Look for explicit statements like "THE ANSWER IS A"
        for letter in ['A', 'B', 'C', 'D']:
            patterns = [
                f"THE ANSWER IS {letter}",
                f"ANSWER IS {letter}",
                f"I CHOOSE {letter}",
                f"SELECT {letter}",
                f"OPTION {letter}"
            ]
            for pattern in patterns:
                if pattern in response_upper:
                    return letter
        
        # Final fallback: Look for last occurrence of a standalone letter
        letters_found = []
        for letter in ['A', 'B', 'C', 'D']:
            if f" {letter}" in response_upper or f"{letter})" in response_upper or f"({letter}" in response_upper:
                letters_found.append(letter)
        
        if letters_found:
            return letters_found[-1]  # Return the last found letter
        
        return "Unknown"
    
    def run_benchmark(self, category: str, difficulty: str, num_questions: int, model: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str]:
        """Run benchmark evaluation on filtered questions."""
        if not self.model_manager.get_configured_providers():
            return pd.DataFrame(), "Please configure API providers first"
        
        filtered_df = self.get_filtered_data(category, difficulty)
        
        if filtered_df.empty:
            return pd.DataFrame(), "No questions found for the selected filters"
        
        # Sample questions if requested number is less than available
        if num_questions < len(filtered_df):
            filtered_df = filtered_df.sample(n=num_questions, random_state=42)
        
        results = []
        correct_count = 0
        
        progress(0, desc="Starting evaluation...")
        
        for i, (_, row) in enumerate(filtered_df.iterrows()):
            progress((i + 1) / len(filtered_df), desc=f"Evaluating question {i + 1}/{len(filtered_df)}")
            
            result = self.evaluate_single_question(row['question_id'], model)
            
            if "error" not in result:
                results.append(result)
                if result['is_correct']:
                    correct_count += 1
            
            # Add small delay to avoid rate limits
            time.sleep(0.5)
        
        if not results:
            return pd.DataFrame(), "No valid results obtained"
        
        results_df = pd.DataFrame(results)
        accuracy = (correct_count / len(results)) * 100
        
        summary = f"""
        Benchmark Complete!
        
        Total Questions: {len(results)}
        Correct Answers: {correct_count}
        Accuracy: {accuracy:.2f}%
        Model: {model}
        Category: {category}
        Difficulty: {difficulty}
        """
        
        return results_df, summary

# Global app instance
app = MathsBenchmarkApp()

def create_gradio_interface():
    """Create the Gradio interface for the Mathematics Benchmark."""
    
    # Get unique categories and difficulties
    categories = ["All"] + sorted(app.df['category'].unique().tolist()) if not app.df.empty else ["All"]
    difficulties = ["All"] + sorted(app.df['difficulty'].unique().tolist()) if not app.df.empty else ["All"]
    
    with gr.Blocks(title="Mathematics Benchmark", theme=gr.themes.Soft()) as interface:
        gr.HTML("""
        <div style="text-align: center; padding: 20px;">
            <h1>๐Ÿงฎ LLM Mathematics Benchmark</h1>
            <p>Evaluate Large Language Models on mathematical reasoning tasks using a diverse dataset of questions</p>
        </div>
        """)
        
        with gr.Tab("๐Ÿ”ง Configuration"):
            gr.HTML("<h3>API Configuration</h3><p>Configure your API keys for different model providers:</p>")
            
            # OpenAI Configuration
            with gr.Group():
                gr.HTML("<h4>๐Ÿค– OpenAI Configuration</h4>")
                with gr.Row():
                    openai_key_input = gr.Textbox(
                        label="OpenAI API Key",
                        placeholder="Enter your OpenAI API key",
                        type="password",
                        scale=3
                    )
                    openai_setup_btn = gr.Button("Configure OpenAI", variant="primary", scale=1)
                
                openai_status = gr.Textbox(label="OpenAI Status", interactive=False)
            
            # Claude Configuration  
            with gr.Group():
                gr.HTML("<h4>๐Ÿง  Anthropic Claude Configuration</h4>")
                with gr.Row():
                    claude_key_input = gr.Textbox(
                        label="Anthropic API Key",
                        placeholder="Enter your Anthropic API key",
                        type="password",
                        scale=3
                    )
                    claude_setup_btn = gr.Button("Configure Claude", variant="primary", scale=1)
                
                claude_status = gr.Textbox(label="Claude Status", interactive=False)
            
            # Configuration status
            config_summary = gr.Textbox(
                label="Configuration Summary",
                placeholder="No providers configured",
                interactive=False
            )
            
            def setup_openai(api_key):
                success, message = app.setup_api_provider("openai", api_key)
                update_config_summary()
                return message
            
            def setup_claude(api_key):
                success, message = app.setup_api_provider("claude", api_key)
                update_config_summary()
                return message
            
            def update_config_summary():
                configured = app.model_manager.get_configured_providers()
                if not configured:
                    return "No providers configured"
                return f"Configured providers: {', '.join(configured)}"
            
            openai_setup_btn.click(
                fn=setup_openai,
                inputs=[openai_key_input],
                outputs=[openai_status]
            )
            
            claude_setup_btn.click(
                fn=setup_claude,
                inputs=[claude_key_input],
                outputs=[claude_status]
            )
        
        with gr.Tab("๐Ÿ“Š Dataset Explorer"):
            with gr.Row():
                filter_category = gr.Dropdown(
                    choices=categories,
                    value="All",
                    label="Category",
                    scale=1
                )
                filter_difficulty = gr.Dropdown(
                    choices=difficulties,
                    value="All", 
                    label="Difficulty",
                    scale=1
                )
                refresh_btn = gr.Button("Refresh Data", scale=1)
            
            dataset_table = gr.Dataframe(
                headers=["question_id", "category", "difficulty", "question", "correct_answer"],
                label="Filtered Dataset"
            )
            
            def update_table(category, difficulty):
                filtered_df = app.get_filtered_data(category, difficulty)
                if filtered_df.empty:
                    return pd.DataFrame()
                return filtered_df[['question_id', 'category', 'difficulty', 'question', 'correct_answer']]
            
            refresh_btn.click(
                fn=update_table,
                inputs=[filter_category, filter_difficulty],
                outputs=[dataset_table]
            )
            
            # Initial load
            interface.load(
                fn=update_table,
                inputs=[filter_category, filter_difficulty],
                outputs=[dataset_table]
            )
        
        with gr.Tab("๐Ÿงช Run Benchmark"):
            with gr.Row():
                bench_category = gr.Dropdown(
                    choices=categories,
                    value="All",
                    label="Category Filter"
                )
                bench_difficulty = gr.Dropdown(
                    choices=difficulties,
                    value="All",
                    label="Difficulty Filter"
                )
            
            with gr.Row():
                num_questions = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=10,
                    step=1,
                    label="Number of Questions"
                )
                model_choice = gr.Dropdown(
                    choices=app.model_manager.get_flat_model_list(),
                    value=app.model_manager.get_flat_model_list()[0] if app.model_manager.get_flat_model_list() else None,
                    label="Model"
                )
            
            run_benchmark_btn = gr.Button("Run Benchmark", variant="primary", size="lg")
            
            benchmark_summary = gr.Textbox(
                label="Benchmark Results Summary",
                lines=8,
                interactive=False
            )
            
            results_table = gr.Dataframe(
                label="Detailed Results",
                headers=["question_id", "question", "category", "difficulty", "correct_answer", "correct_letter", "ai_answer", "ai_choice", "is_correct"]
            )
            
            def run_benchmark_wrapper(category, difficulty, num_q, model):
                results_df, summary = app.run_benchmark(category, difficulty, num_q, model)
                
                if results_df.empty:
                    return summary, pd.DataFrame()
                
                # Prepare display dataframe
                display_df = results_df[['question_id', 'question', 'category', 'difficulty', 'correct_answer', 'correct_answer_letter', 'ai_answer', 'is_correct']].copy()
                
                # Add the actual AI choice text
                display_df['ai_choice'] = display_df.apply(
                    lambda row: results_df[results_df['question_id'] == row['question_id']]['options'].iloc[0].get(row['ai_answer'], 'Unknown') 
                    if row['ai_answer'] in ['A', 'B', 'C', 'D'] else 'Invalid', axis=1
                )
                
                # Reorder columns for better display
                display_df = display_df[['question_id', 'question', 'category', 'difficulty', 'correct_answer', 'correct_answer_letter', 'ai_answer', 'ai_choice', 'is_correct']]
                
                return summary, display_df
            
            run_benchmark_btn.click(
                fn=run_benchmark_wrapper,
                inputs=[bench_category, bench_difficulty, num_questions, model_choice],
                outputs=[benchmark_summary, results_table]
            )
        
        with gr.Tab("๐Ÿ” Debug Single Question"):
            with gr.Row():
                debug_question_id = gr.Number(
                    label="Question ID",
                    value=450,
                    precision=0
                )
                debug_model = gr.Dropdown(
                    choices=app.model_manager.get_flat_model_list(),
                    value=app.model_manager.get_flat_model_list()[0] if app.model_manager.get_flat_model_list() else None,
                    label="Model"
                )
                debug_btn = gr.Button("Test Single Question", variant="primary")
            
            debug_question_display = gr.Textbox(
                label="Question Details",
                lines=4,
                interactive=False
            )
            
            debug_ai_response = gr.Textbox(
                label="Full AI Response",
                lines=8,
                interactive=False
            )
            
            debug_result = gr.Textbox(
                label="Parsed Result",
                lines=3,
                interactive=False
            )
            
            def debug_single_question(question_id, model):
                if not app.model_manager.get_configured_providers():
                    return "Please configure API providers first", "", ""
                
                try:
                    question_id = int(question_id)
                    matching_questions = app.df[app.df['question_id'] == question_id]
                    
                    if matching_questions.empty:
                        return f"No question found with ID {question_id}", "", ""
                    
                    question_data = matching_questions.iloc[0].to_dict()
                    
                    question_info = f"""Question ID: {question_id}
Category: {question_data['category']}
Difficulty: {question_data['difficulty']}
Question: {question_data['question']}

Options:
A) {question_data['option_a']}
B) {question_data['option_b']}
C) {question_data['option_c']}
D) {question_data['option_d']}

Correct Answer: {question_data['correct_answer']}"""
                    
                    result = app.evaluate_single_question(question_id, model)
                    
                    if "error" in result:
                        return question_info, "", f"Error: {result['error']}"
                    
                    ai_response = result.get('ai_response', 'No response')
                    
                    parsed_result = f"""Extracted Answer: {result.get('ai_answer', 'Unknown')}
Correct Letter: {result.get('correct_answer_letter', 'Unknown')}
Is Correct: {result.get('is_correct', False)}
AI Choice Text: {result.get('options', {}).get(result.get('ai_answer', ''), 'Unknown')}"""
                    
                    return question_info, ai_response, parsed_result
                    
                except Exception as e:
                    return f"Error processing question: {str(e)}", "", ""
            
            debug_btn.click(
                fn=debug_single_question,
                inputs=[debug_question_id, debug_model],
                outputs=[debug_question_display, debug_ai_response, debug_result]
            )
        
        with gr.Tab("๐Ÿ“ˆ Analytics"):
            gr.HTML("""
            <div style="padding: 20px;">
                <h3>Dataset Statistics</h3>
            </div>
            """)
            
            # Dataset statistics
            if not app.df.empty:
                stats_html = f"""
                <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; padding: 20px;">
                    <div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
                        <h4 style="color: #101010;">Total Questions</h4>
                        <p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df)}</p>
                    </div>
                    <div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
                        <h4 style="color: #101010;">Categories</h4>
                        <p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df['category'].unique())}</p>
                    </div>
                    <div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
                        <h4 style="color: #101010;">Difficulty Levels</h4>
                        <p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df['difficulty'].unique())}</p>
                    </div>
                </div>
                
                <div style="padding: 20px;">
                    <h4>Categories Distribution:</h4>
                    <ul>
                """
                
                for category, count in app.df['category'].value_counts().items():
                    stats_html += f"<li>{category}: {count} questions</li>"
                
                stats_html += """
                    </ul>
                    
                    <h4>Difficulty Distribution:</h4>
                    <ul>
                """
                
                for difficulty, count in app.df['difficulty'].value_counts().items():
                    stats_html += f"<li>{difficulty}: {count} questions</li>"
                
                stats_html += "</ul></div>"
                
                gr.HTML(stats_html)
    
    return interface

# Create and launch the interface
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=False
    )