File size: 2,902 Bytes
a0bcaae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# Copyright (c) SenseTime Research. All rights reserved.
import os
import torch
from tqdm import tqdm
from pti.pti_configs import paths_config, hyperparameters, global_config
from pti.training.coaches.base_coach import BaseCoach
from utils.log_utils import log_images_from_w
class MultiIDCoach(BaseCoach):
def __init__(self, data_loader, use_wandb):
super().__init__(data_loader, use_wandb)
def train(self):
self.G.synthesis.train()
self.G.mapping.train()
w_path_dir = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}'
os.makedirs(w_path_dir, exist_ok=True)
os.makedirs(f'{w_path_dir}/{paths_config.pti_results_keyword}', exist_ok=True)
use_ball_holder = True
w_pivots = []
images = []
for fname, image in self.data_loader:
if self.image_counter >= hyperparameters.max_images_to_invert:
break
image_name = fname[0]
if hyperparameters.first_inv_type == 'w+':
embedding_dir = f'{w_path_dir}/{paths_config.e4e_results_keyword}/{image_name}'
else:
embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}'
os.makedirs(embedding_dir, exist_ok=True)
w_pivot = self.get_inversion(w_path_dir, image_name, image)
w_pivots.append(w_pivot)
images.append((image_name, image))
self.image_counter += 1
for i in tqdm(range(hyperparameters.max_pti_steps)):
self.image_counter = 0
for data, w_pivot in zip(images, w_pivots):
image_name, image = data
if self.image_counter >= hyperparameters.max_images_to_invert:
break
real_images_batch = image.to(global_config.device)
generated_images = self.forward(w_pivot)
loss, l2_loss_val, loss_lpips = self.calc_loss(generated_images, real_images_batch, image_name,
self.G, use_ball_holder, w_pivot)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
use_ball_holder = global_config.training_step % hyperparameters.locality_regularization_interval == 0
global_config.training_step += 1
self.image_counter += 1
if self.use_wandb:
log_images_from_w(w_pivots, self.G, [image[0] for image in images])
# torch.save(self.G,
# f'{paths_config.checkpoints_dir}/model_{global_config.run_name}_multi_id.pt')
snapshot_data = dict()
snapshot_data['G_ema'] = self.G
import pickle
with open(f'{paths_config.checkpoints_dir}/model_{global_config.run_name}_multi_id.pkl', 'wb') as f:
pickle.dump(snapshot_data, f)
|