File size: 8,456 Bytes
550b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import gc
import argparse
import datetime
from io import BytesIO
from glob import glob
from tqdm.auto import tqdm
from PIL import Image
import matplotlib.pyplot as plt

import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import v2, InterpolationMode

import datasets
import bitsandbytes as bnb
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel


def parse_args():
    parser = argparse.ArgumentParser(
        description = "DiT training script",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument(
        "--output_dir",
        type = str,
        default = "./outputs",
        help = "Output directory for training results",
    )
    parser.add_argument(
        "--unet",
        type = str,
        default = "./sd_flow_unet",
        help = "folder for unet init",
    )
    parser.add_argument(
        "--seed",
        type = int,
        default = 42,
        help = "Seed for reproducible training",
    )
    parser.add_argument(
        "--batch_size",
        type = int,
        default = 16,
    )
    parser.add_argument(
        "--base_lr",
        type = float,
        default = 2e-6,
        help = "Base learning rate, will be scaled by sqrt(batch_size)",
    )
    parser.add_argument(
        "--shift",
        type = float,
        default = 2.0,
        help = "Noise schedule shift for training (shift > 1 will spend more effort on early timesteps/high noise)",
    )
    parser.add_argument(
        "--dropout",
        type = float,
        default = 0.1,
        help = "Probability to drop out conditioning (to support CFG)",
    )
    parser.add_argument(
        "--max_train_steps",
        type = int,
        default = 50_000,
        help = "Total number of training steps",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type = int,
        default = 1000,
        help = "Save a checkpoint of the training state every X steps",
    )
    
    args = parser.parse_args()
    return args


def train(args):
    device = "cuda"
    torch.backends.cuda.matmul.allow_tf32 = True # faster but slightly less accurate
    
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    
    date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    real_output_dir = os.path.join(args.output_dir, date_time)
    os.makedirs(real_output_dir, exist_ok=True)
    t_writer = SummaryWriter(log_dir=real_output_dir, flush_secs=60)
    
    data_files = glob("E:/datasets/commoncatalog-cc-by/**/*.parquet", recursive=True)
    train_dataset = datasets.load_dataset("parquet", data_files=data_files, split="train", streaming=True)
    train_dataset = train_dataset.shuffle(seed=args.seed, buffer_size=1000)
    
    image_transforms = v2.Compose([
        v2.ToImage(),
        v2.ToDtype(dtype=torch.float32, scale=True),
        v2.Resize(512),
        v2.CenterCrop(512),
    ])
    
    def collate_fn(examples):
        captions = []
        pixel_values = []
        
        for example in examples:
            captions.append(example["blip2_caption"])
            
            image = Image.open(BytesIO(example["jpg"])).convert('RGB')
            image = image_transforms(image) * 2 - 1
            image = torch.clamp(torch.nan_to_num(image), min=-1, max=1)
            pixel_values.append(image)
        
        pixel_values = torch.stack(pixel_values, dim=0).contiguous()
        return pixel_values, captions
    
    train_dataloader = DataLoader(
        dataset = train_dataset,
        batch_size = args.batch_size,
        collate_fn = collate_fn,
        num_workers = 0,
    )
    
    tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder")
    text_encoder = text_encoder.to(dtype=torch.bfloat16, device=device)
    text_encoder.requires_grad_(False)
    text_encoder.eval()
    
    vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")
    vae = vae.to(dtype=torch.bfloat16, device=device)
    vae.requires_grad_(False)
    vae.eval()
    
    unet = UNet2DConditionModel.from_pretrained(args.unet).to(device)
    unet.requires_grad_(True)
    unet.enable_gradient_checkpointing()
    unet.train()
    
    optimizer = bnb.optim.AdamW8bit(
        unet.parameters(),
        lr = args.base_lr * (args.batch_size ** 0.5),
    )
    
    global_step = 0
    train_logs = {"train_step": [], "train_loss": [], "train_timestep": []}
    
    def encode_captions(captions):
        input_ids = []
        for caption in captions:
            if torch.rand(1) < args.dropout:
                caption = "" # caption dropout for better CFG
            ids = tokenizer(
                caption,
                max_length=tokenizer.model_max_length, 
                padding="max_length", 
                truncation=True, 
                return_tensors="pt",
                ).input_ids
            input_ids.append(ids)
        input_ids = torch.stack(input_ids, dim=0).to(device)
        return text_encoder(input_ids, return_dict=False)[0].float()
    
    def vae_encode(pixels):
        latents = vae.encode(pixels.to(dtype=torch.bfloat16, device=device)).latent_dist.sample()
        return latents.float() * vae.config.scaling_factor
    
    def get_pred(batch, log_to=None):
        pixels, captions = batch
        encoder_hidden_states = encode_captions(captions)
        latents = vae_encode(pixels)
        
        sigmas = torch.rand(latents.shape[0]).to(device)
        sigmas = (args.shift * sigmas) / (1 + (args.shift - 1) * sigmas)
        timesteps = sigmas * 1000
        sigmas = sigmas[:, None, None, None]
        
        noise = torch.randn_like(latents)
        noisy_latents = noise * sigmas + latents * (1 - sigmas)
        target = noise - latents
        
        pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
        
        loss = F.mse_loss(pred.float(), target.float(), reduction="none")
        loss = loss.mean(dim=list(range(1, len(loss.shape)))) # reduce over all dimensions except batch
        
        if log_to is not None:
            for i in range(timesteps.shape[0]):
                log_to["train_step"].append(global_step)
                log_to["train_loss"].append(loss[i].item())
                log_to["train_timestep"].append(timesteps[i].item())
        
        return loss.mean()
    
    def plot_logs(log_dict):
        plt.scatter(log_dict["train_timestep"], log_dict["train_loss"], s=3, c=log_dict["train_step"], marker=".", cmap='cool')
        plt.xlabel("timestep")
        plt.ylabel("loss")
        plt.yscale("log")
    
    progress_bar = tqdm(range(0, args.max_train_steps))
    while True:
        for step, batch in enumerate(train_dataloader):
            loss = get_pred(batch, log_to=train_logs)
            t_writer.add_scalar("train/loss", loss.detach().item(), global_step)
            loss.backward()
            
            grad_norm = torch.nn.utils.clip_grad_norm_(unet.parameters(), 2.0)
            t_writer.add_scalar("train/grad_norm", grad_norm.detach().item(), global_step)
            
            optimizer.step()
            optimizer.zero_grad()
            
            progress_bar.update(1)
            global_step += 1
            
            if global_step % 100 == 0:
                plot_logs(train_logs)
                t_writer.add_figure("train_loss", plt.gcf(), global_step)
            
            if global_step >= args.max_train_steps or global_step % args.checkpointing_steps == 0:
                checkpoint_path = os.path.join(real_output_dir, f"checkpoint-{global_step:08}")
                unet.save_pretrained(os.path.join(checkpoint_path, "unet"), safe_serialization=True)
            
            if global_step >= args.max_train_steps:
                break


if __name__ == "__main__":
    train(parse_args())