File size: 8,456 Bytes
550b01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import gc
import argparse
import datetime
from io import BytesIO
from glob import glob
from tqdm.auto import tqdm
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import v2, InterpolationMode
import datasets
import bitsandbytes as bnb
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
def parse_args():
parser = argparse.ArgumentParser(
description = "DiT training script",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--output_dir",
type = str,
default = "./outputs",
help = "Output directory for training results",
)
parser.add_argument(
"--unet",
type = str,
default = "./sd_flow_unet",
help = "folder for unet init",
)
parser.add_argument(
"--seed",
type = int,
default = 42,
help = "Seed for reproducible training",
)
parser.add_argument(
"--batch_size",
type = int,
default = 16,
)
parser.add_argument(
"--base_lr",
type = float,
default = 2e-6,
help = "Base learning rate, will be scaled by sqrt(batch_size)",
)
parser.add_argument(
"--shift",
type = float,
default = 2.0,
help = "Noise schedule shift for training (shift > 1 will spend more effort on early timesteps/high noise)",
)
parser.add_argument(
"--dropout",
type = float,
default = 0.1,
help = "Probability to drop out conditioning (to support CFG)",
)
parser.add_argument(
"--max_train_steps",
type = int,
default = 50_000,
help = "Total number of training steps",
)
parser.add_argument(
"--checkpointing_steps",
type = int,
default = 1000,
help = "Save a checkpoint of the training state every X steps",
)
args = parser.parse_args()
return args
def train(args):
device = "cuda"
torch.backends.cuda.matmul.allow_tf32 = True # faster but slightly less accurate
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
real_output_dir = os.path.join(args.output_dir, date_time)
os.makedirs(real_output_dir, exist_ok=True)
t_writer = SummaryWriter(log_dir=real_output_dir, flush_secs=60)
data_files = glob("E:/datasets/commoncatalog-cc-by/**/*.parquet", recursive=True)
train_dataset = datasets.load_dataset("parquet", data_files=data_files, split="train", streaming=True)
train_dataset = train_dataset.shuffle(seed=args.seed, buffer_size=1000)
image_transforms = v2.Compose([
v2.ToImage(),
v2.ToDtype(dtype=torch.float32, scale=True),
v2.Resize(512),
v2.CenterCrop(512),
])
def collate_fn(examples):
captions = []
pixel_values = []
for example in examples:
captions.append(example["blip2_caption"])
image = Image.open(BytesIO(example["jpg"])).convert('RGB')
image = image_transforms(image) * 2 - 1
image = torch.clamp(torch.nan_to_num(image), min=-1, max=1)
pixel_values.append(image)
pixel_values = torch.stack(pixel_values, dim=0).contiguous()
return pixel_values, captions
train_dataloader = DataLoader(
dataset = train_dataset,
batch_size = args.batch_size,
collate_fn = collate_fn,
num_workers = 0,
)
tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder")
text_encoder = text_encoder.to(dtype=torch.bfloat16, device=device)
text_encoder.requires_grad_(False)
text_encoder.eval()
vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")
vae = vae.to(dtype=torch.bfloat16, device=device)
vae.requires_grad_(False)
vae.eval()
unet = UNet2DConditionModel.from_pretrained(args.unet).to(device)
unet.requires_grad_(True)
unet.enable_gradient_checkpointing()
unet.train()
optimizer = bnb.optim.AdamW8bit(
unet.parameters(),
lr = args.base_lr * (args.batch_size ** 0.5),
)
global_step = 0
train_logs = {"train_step": [], "train_loss": [], "train_timestep": []}
def encode_captions(captions):
input_ids = []
for caption in captions:
if torch.rand(1) < args.dropout:
caption = "" # caption dropout for better CFG
ids = tokenizer(
caption,
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
).input_ids
input_ids.append(ids)
input_ids = torch.stack(input_ids, dim=0).to(device)
return text_encoder(input_ids, return_dict=False)[0].float()
def vae_encode(pixels):
latents = vae.encode(pixels.to(dtype=torch.bfloat16, device=device)).latent_dist.sample()
return latents.float() * vae.config.scaling_factor
def get_pred(batch, log_to=None):
pixels, captions = batch
encoder_hidden_states = encode_captions(captions)
latents = vae_encode(pixels)
sigmas = torch.rand(latents.shape[0]).to(device)
sigmas = (args.shift * sigmas) / (1 + (args.shift - 1) * sigmas)
timesteps = sigmas * 1000
sigmas = sigmas[:, None, None, None]
noise = torch.randn_like(latents)
noisy_latents = noise * sigmas + latents * (1 - sigmas)
target = noise - latents
pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) # reduce over all dimensions except batch
if log_to is not None:
for i in range(timesteps.shape[0]):
log_to["train_step"].append(global_step)
log_to["train_loss"].append(loss[i].item())
log_to["train_timestep"].append(timesteps[i].item())
return loss.mean()
def plot_logs(log_dict):
plt.scatter(log_dict["train_timestep"], log_dict["train_loss"], s=3, c=log_dict["train_step"], marker=".", cmap='cool')
plt.xlabel("timestep")
plt.ylabel("loss")
plt.yscale("log")
progress_bar = tqdm(range(0, args.max_train_steps))
while True:
for step, batch in enumerate(train_dataloader):
loss = get_pred(batch, log_to=train_logs)
t_writer.add_scalar("train/loss", loss.detach().item(), global_step)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(unet.parameters(), 2.0)
t_writer.add_scalar("train/grad_norm", grad_norm.detach().item(), global_step)
optimizer.step()
optimizer.zero_grad()
progress_bar.update(1)
global_step += 1
if global_step % 100 == 0:
plot_logs(train_logs)
t_writer.add_figure("train_loss", plt.gcf(), global_step)
if global_step >= args.max_train_steps or global_step % args.checkpointing_steps == 0:
checkpoint_path = os.path.join(real_output_dir, f"checkpoint-{global_step:08}")
unet.save_pretrained(os.path.join(checkpoint_path, "unet"), safe_serialization=True)
if global_step >= args.max_train_steps:
break
if __name__ == "__main__":
train(parse_args()) |