File size: 13,773 Bytes
6af2674
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x796d6e96b130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796d6e96b1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796d6e96b250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796d6e96b2e0>", "_build": "<function ActorCriticPolicy._build at 0x796d6e96b370>", "forward": "<function ActorCriticPolicy.forward at 0x796d6e96b400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x796d6e96b490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796d6e96b520>", "_predict": "<function ActorCriticPolicy._predict at 0x796d6e96b5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796d6e96b640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796d6e96b6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x796d6e96b760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796d6e970040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702993488743820600, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3VLb32iCO6Q9drupo4XbWm8gO7nrKLOQAAgD8AAIA/M7JIPU0+bj4ijpK9zzcYvuTv1Lw1EV+8AAAAAAAAAAAmYrI9KUhEultKUTp06Ti3ItukuTr1aLgAAAAAAACAP6bFh72PdmC6iu3YOhzVvTXN1BM5EBr/uQAAgD8AAIA/zWq1PK5Fibpz84i1g8yesBX9DLpivbY0AACAPwAAgD9mpFe8FC6Iupoderm8m0C0zhoWu1YhkTgAAIA/AACAP80VkzxOXK8/zoTtPntL1r4vQqm8wPHAvQAAAAAAAAAAZmCyPfakGbr9GGi6VoBmNudHUDpQ6o05AAAAAAAAgD+zSgS9KShDumISHDTJU+UvBK9DO2yhjrMAAIA/AACAP2YQgDz2ZES6GF0yuRE60LMhvsw687FROAAAgD8AAIA/mtEnu2MwLj0hZEO+X3Eivv45g70t3py7AAAAAAAAAACA6am9j7Jsuirrj7gugCC2HGeBO7w9pzcAAIA/AACAP2YIebz27De678QPupKxgrXG1FI7j8gnOQAAgD8AAIA/TRPfvaae6D4lrvc9xYOLvgDHaDtvQY86AAAAAAAAAACNwOU9QxfMPkYeP74tgX6+XzQkvataMj0AAAAAAAAAADP+mbxcE1a6Bbn2OKtytrFJI1G697YOuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFt2IX0oScuMAWyUTegDjAF0lEdAkhVC1y/9HnV9lChoBkdAXkWjGkvboWgHTegDaAhHQJIYSTcIqsl1fZQoaAZHQGN/fPPcBU9oB03oA2gIR0CSHpqBEroXdX2UKGgGR0BI6LuIAOriaAdNHAFoCEdAkiDGYSg5BHV9lChoBkdAYdWXnhbW3GgHTegDaAhHQJIs9Gus90R1fZQoaAZHQGM9U8V58jRoB03oA2gIR0CSL6JOnEVGdX2UKGgGR0BhQ1VrAP/aaAdN6ANoCEdAki+kkOZssXV9lChoBkdAZjzuw5eZ5WgHTegDaAhHQJIzwvCdjG11fZQoaAZHQFz2p4bCJoFoB03oA2gIR0CSON1yeZogdX2UKGgGR0BjTS9sabWmaAdN6ANoCEdAkjmagdwNsnV9lChoBkdAYrvEXLvCuWgHTegDaAhHQJI7pzGPxQV1fZQoaAZHQEubuXNTtLNoB005AWgIR0CSWQaVD8cddX2UKGgGR0BjhFa4c3l0aAdN6ANoCEdAklzlZX+2mnV9lChoBkdAYFscABDG+GgHTegDaAhHQJJhd5LRKHx1fZQoaAZHQGV5nzpX6qNoB03oA2gIR0CSYuVjqfOEdX2UKGgGR0BifauloDgZaAdN6ANoCEdAkmSOlXRw63V9lChoBkdAZoOExqO94GgHTegDaAhHQJJnYfKZDzB1fZQoaAZHQFtyzMibDuVoB03oA2gIR0CSbdbF0gbIdX2UKGgGR0Bh4vqPfbblaAdN6ANoCEdAknCsp1A7gnV9lChoBkdAY3EShakhzWgHTegDaAhHQJJ2ctEofCB1fZQoaAZHQGBa2Ifr8ixoB03oA2gIR0CSeDPgvUSadX2UKGgGR0BjPSAhB7eEaAdN6ANoCEdAkoD2jsUqQXV9lChoBkdAYn35aePJaWgHTegDaAhHQJKDX7aZhKF1fZQoaAZHQF849d/rjYJoB03oA2gIR0CSg2Ds+mm+dX2UKGgGR0BjkjMFEAo5aAdN6ANoCEdAko2spPRAr3V9lChoBkdAZSV4dp7CzmgHTegDaAhHQJKOiU/wAlx1fZQoaAZHQGKSOQIUrTZoB03oA2gIR0CSkWISUTtcdX2UKGgGR0Bd4HS0BwMqaAdN6ANoCEdAkq+3pbD/EXV9lChoBkdAY8QbH6uW8mgHTegDaAhHQJKyiaKDTSd1fZQoaAZHQGWSOp84PwxoB03oA2gIR0CStl/SH/LldX2UKGgGR0BfrLyxzJZGaAdN6ANoCEdAkrfjGcWj5HV9lChoBkdAYBewCbMHKWgHTegDaAhHQJK5okTpPh11fZQoaAZHQGSod+PRzBBoB03oA2gIR0CSvJ3s5XEJdX2UKGgGR0BkBKJ0nw5OaAdN6ANoCEdAksXH6uW8iHV9lChoBkdAYBYBZIQOF2gHTegDaAhHQJLJn5GjKxN1fZQoaAZHQF/WXzUZvUBoB03oA2gIR0CSz56Rhc7hdX2UKGgGR0BjVJxBE8aGaAdN6ANoCEdAktFe9rXUY3V9lChoBkfAMDhKQJXyRWgHTSABaAhHQJLS12OhkAh1fZQoaAZHQGHAHdfsu4BoB03oA2gIR0CS2cagVXV9dX2UKGgGR0BlD2QCCBf8aAdN6ANoCEdAktwOmWMS9XV9lChoBkdAYvzrxiG34WgHTegDaAhHQJLcEXGff411fZQoaAZHQEkp6X0Gu9xoB0vhaAhHQJLfU7Njbzt1fZQoaAZHQGHRt70Fr2xoB03oA2gIR0CS5B9F4LThdX2UKGgGR0BjXdHxz7uVaAdN6ANoCEdAkuSxRZU1h3V9lChoBkdAX8MY+B6KL2gHTegDaAhHQJLmt5Pdl/Z1fZQoaAZHQGFmKdxyXD5oB03oA2gIR0CTBUtoBaLXdX2UKGgGR0BjO+Y6XBxhaAdN6ANoCEdAkwgPF72L53V9lChoBkdAYHXn27FsHmgHTegDaAhHQJML3N7jT8Z1fZQoaAZHQGaplUQ04zdoB03oA2gIR0CTDY57PY4AdX2UKGgGR0BhpfQrtmcwaAdN6ANoCEdAkw9WP5pJw3V9lChoBkdARyenTAnDzmgHS/poCEdAkxhgmu1WsHV9lChoBkdAY6PyU9pyqGgHTegDaAhHQJMY65jH4oJ1fZQoaAZHQGe1Ix59mYloB03oA2gIR0CTG8MtsenydX2UKGgGR0Bo4Rrvb48EaAdN6ANoCEdAkyGQeV9nb3V9lChoBkdAYRx3Sro4dmgHTegDaAhHQJMlOtmtheB1fZQoaAZHQF1dML4N7SloB03oA2gIR0CTLpYHxBmgdX2UKGgGR0BbJjV6NVBEaAdN6ANoCEdAkzERplBhQXV9lChoBkdAZtimaYu01WgHTegDaAhHQJMxEuIyj591fZQoaAZHQGTanQpnYg9oB03oA2gIR0CTNDUrkKeDdX2UKGgGR0BMUk9U0elsaAdNIgFoCEdAkzYuQlruY3V9lChoBkdAaDn3A2ycC2gHTegDaAhHQJM4ZSS/0ul1fZQoaAZHQGOP01qFh5RoB03oA2gIR0CTOO6cy31BdX2UKGgGR0Bh7OYIBzV+aAdN6ANoCEdAkzqTqSowVXV9lChoBkdAH35wOvt+kWgHTQ4BaAhHQJM+1WCEpRZ1fZQoaAZHQGMLhQWN3npoB03oA2gIR0CTVSPpIMBqdX2UKGgGR0BfaF1nuiN9aAdN6ANoCEdAk1xRX8wYcnV9lChoBkdAZI3vJA+pwWgHTegDaAhHQJNeP5P/JeV1fZQoaAZHQGXR925hBqtoB03oA2gIR0CTYG4Ajps5dX2UKGgGR0BBAOearmyPaAdNEgFoCEdAk2KVkc0cfnV9lChoBkdAYtS4sEq2B2gHTegDaAhHQJNqcuctoSN1fZQoaAZHQGWDwnH/951oB03oA2gIR0CTavR9gF5fdX2UKGgGR0BjrMoa1kUcaAdN6ANoCEdAk2278R+SbHV9lChoBkdAQq6HVPN3XGgHTQMBaAhHQJNuin4wh4d1fZQoaAZHQDHUHgP3BYVoB00DAWgIR0CTcwsuWa+fdX2UKGgGR0BmL0GNaQmvaAdN6ANoCEdAk3ZH+yZ8bHV9lChoBkdAYhHDNyHVPWgHTegDaAhHQJN9cSYgJTl1fZQoaAZHQF4/UFB6a9doB03oA2gIR0CTf5nbZezEdX2UKGgGR0BhCAOvt+kQaAdN6ANoCEdAk4MGaUiY9nV9lChoBkdAYpR5oGpuM2gHTegDaAhHQJOFaoZQ53l1fZQoaAZHQGTqEO7QLNRoB03oA2gIR0CTiB4FA3UAdX2UKGgGR0BhcDfBN21VaAdN6ANoCEdAk4izASFoMHV9lChoBkdAYOeOBlMAWGgHTegDaAhHQJOKpzq8lHB1fZQoaAZHQGSx5DZ13dNoB03oA2gIR0CTqhjRD1GtdX2UKGgGR0Bwriu+yquKaAdNJANoCEdAk7BhI8QqZ3V9lChoBkdAXLR4qwyIpGgHTegDaAhHQJOx+wnpjc51fZQoaAZHQFxoliSaEzxoB03oA2gIR0CTs7Em6XjVdX2UKGgGR0BkUGafBeolaAdN6ANoCEdAk70b0SRKYnV9lChoBkdAZT8pjMFEA2gHTegDaAhHQJPAD3Ehq0t1fZQoaAZHQGFPafSQYDVoB03oA2gIR0CTwQwY+B6KdX2UKGgGR0BhqhVp9JBgaAdN6ANoCEdAk8a0nssxwnV9lChoBkdAZBfx+8XenGgHTegDaAhHQJPKkkgOjIt1fZQoaAZHQElP4pMHryFoB0vtaAhHQJPN+XRgJC11fZQoaAZHQGIiuUMXrMVoB03oA2gIR0CT0RbRF7UodX2UKGgGR0Biu1at9x6waAdN6ANoCEdAk9MfQjUutnV9lChoBkdAZgf3dKujh2gHTegDaAhHQJPWNxzaK1p1fZQoaAZHQF/OrxiG34NoB03oA2gIR0CT2EHjp9qldX2UKGgGR0Bm/SkhzNliaAdN6ANoCEdAk9qLS7Xg+HV9lChoBkdAZW44n4O+ZmgHTegDaAhHQJPbBvMr3Cd1fZQoaAZHQGe+KKP4mC1oB03oA2gIR0CT3L2/SH/MdX2UKGgGR0BwqH/HYHxCaAdNLgFoCEdAk+beY+jdpXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}