File size: 3,112 Bytes
b3a7ec5 9babfe4 b3a7ec5 afab79c b3a7ec5 afab79c 9ff90d6 afab79c b3a7ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language: ja
license: cc-by-sa-4.0
tags:
- sentence-transformers
- sentence-bert
- feature-extraction
- sentence-similarity
---
This is a Japanese sentence-BERT model.
日本語用Sentence-BERTモデル(バージョン2)です。
[バージョン1](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens)よりも良いロス関数である[MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss)を用いて学習した改良版です。
手元の非公開データセットでは、バージョン1よりも1.5ポイントほど精度が高い結果が得られました。
事前学習済みモデルとして[cl-tohoku/bert-base-japanese-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-v2)を利用しました。
従って、推論の実行にはfugashiとunidic-liteが必要です(pip install fugashi unidic-lite)。
# 旧バージョンの解説
https://qiita.com/sonoisa/items/1df94d0a98cd4f209051
モデル名を"sonoisa/sentence-bert-base-ja-mean-tokens-v2"に書き換えれば、本モデルを利用した挙動になります。
# 使い方
```python
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
# return torch.stack(all_embeddings).numpy()
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2" # <- v2です。
model = SentenceBertJapanese(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
```
|