File size: 3,199 Bytes
cb6d395 33b78f8 e6af2ce cb6d395 e8da952 1460f67 b250479 ed303e0 e8da952 c8ba1a2 0804622 c8ba1a2 6ee0ba7 8c509fd f1b337b c8ba1a2 e8da952 6ee0ba7 0804622 e8da952 6ee0ba7 e8da952 b250479 e8da952 b250479 e8da952 0804622 e8da952 f1b337b e8da952 bd0f9f1 c8ba1a2 31c1c71 c2230e4 8f1c738 781b214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- "transformers"
- "text-classification"
languages: "es"
license: "apache-2.0"
datasets: "unam_tesis"
widget:
- text: "Introducción al análisis de riesgos competitivos bajo el enfoque de la función de incidencia acumulada (FIA) y su aplicación con R"
- text: "Asociación del polimorfismo rs1256031 del receptor beta de estrógenos en pacientes con diabetes tipo 2"
---
# Unam_tesis_beto_finnetuning: Unam's thesis classification with BETO
This model is created from the finetuning of the pre-model
for Spanish [BETO] (https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased), using PyTorch framework,
and trained with a set of theses of the National Autonomous University of Mexico (UNAM) (https://tesiunam.dgb.unam.mx/F?func=find-b-0&local_base=TES01).
The model classifies a text into for five (Psicología, Derecho, Química Farmacéutico Biológica, Actuaría, Economía)
possible careers at the UNAM.
## Training Dataset
1000 documents (Thesis introduction, Author´s first name, Author´s last name, Thesis title, Year, Career)
| Careers | Size |
|--------------|----------------------|
| Actuaría | 200 |
| Derecho| 200 |
| Economía| 200 |
| Psicología| 200 |
| Química Farmacéutico Biológica| 200 |
## Example of use
For further details on how to use unam_tesis_beto_finnetuning you can visit the Huggingface Transformers library, starting with the Quickstart section. Unam_tesis models can be accessed simply as 'hackathon-pln-e/unam_tesis_beto_finnetuning' by using the Transformers library. An example of how to download and use the models on this page can be found in this colab notebook.
```python
tokenizer = AutoTokenizer.from_pretrained('hiiamsid/BETO_es_binary_classification', use_fast=False)
model = AutoModelForSequenceClassification.from_pretrained(
'hackathon-pln-e/unam_tesis_BETO_finnetuning', num_labels=5, output_attentions=False,
output_hidden_states=False)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
classificationResult = pipe("Análisis de las condiciones del aprendizaje desde casa en los alumnos de preescolar y primaria del municipio de Nicolás Romero")
```
To cite this resource in a publication please use the following:
## Citation
[UNAM's Tesis with BETO finetuning classify] (https://huggingface.co/hackathon-pln-es/unam_tesis_BETO_finnetuning)
To cite this resource in a publication please use the following:
```
@inproceedings{SpanishNLPHackaton2022,
title={UNAM's Theses with BETO fine-tuning classify },
author={López López, Isaac Isaías and López Ramos, Dionis and Clavel Quintero, Yisel and López López, Ximena Yeraldin },
booktitle={Somos NLP Hackaton 2022},
year={2022}
}
```
## Team members
- Isaac Isaías López López ([MajorIsaiah](https://huggingface.co/MajorIsaiah))
- Dionis López Ramos ([inoid](https://huggingface.co/inoid))
- Yisel Clavel Quintero ([clavel](https://huggingface.co/clavel))
- Ximena Yeraldin López López ([Ximyer](https://huggingface.co/Ximyer)) |