|
--- |
|
pipeline_tag: zero-shot-classification |
|
tags: |
|
- zero-shot-classification |
|
- nli |
|
language: |
|
- es |
|
datasets: |
|
- hackathon-pln-es/nli-es |
|
widget: |
|
- text: "Para detener la pandemia, es importante que todos se presenten a vacunarse." |
|
candidate_labels: "salud, deporte, entretenimiento" |
|
--- |
|
|
|
|
|
# A zero-shot classifier based on bertin-roberta-base-spanish |
|
This model was trained on the basis of the model `bertin-roberta-base-spanish` using **Cross encoder** for NLI task. A CrossEncoder takes a sentence pair as input and outputs a label so it learns to predict the labels: "contradiction": 0, "entailment": 1, "neutral": 2. |
|
|
|
You can use it with Hugging Face's Zero-shot pipeline to make **zero-shot classifications**. Given a sentence and an arbitrary set of labels/topics, it will output the likelihood of the sentence belonging to each of the topic. |
|
|
|
## Usage (HuggingFace Transformers) |
|
The simplest way to use the model is the huggingface transformers pipeline tool. Just initialize the pipeline specifying the task as "zero-shot-classification" and select "hackathon-pln-es/bertin-roberta-base-zeroshot-esnli" as model. |
|
|
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification", |
|
model="hackathon-pln-es/bertin-roberta-base-zeroshot-esnli") |
|
|
|
classifier( |
|
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", |
|
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], |
|
hypothesis_template="Esta oración es sobre {}." |
|
) |
|
``` |
|
|
|
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** |
|
|
|
## Training |
|
|
|
We used [sentence-transformers](https://www.SBERT.net) to train the model. |
|
|
|
**Dataset** |
|
|
|
We used a collection of datasets of Natural Language Inference as training data: |
|
- [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish |
|
- [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated |
|
- [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated |
|
|
|
The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es). |
|
|
|
## Authors |
|
|
|
- [Anibal Pérez](https://huggingface.co/Anarpego) |
|
- [Emilio Tomás Ariza](https://huggingface.co/medardodt) |
|
- [Lautaro Gesuelli Pinto](https://huggingface.co/Lautaro) |
|
- [Mauricio Mazuecos](https://huggingface.co/mmazuecos) |
|
|