File size: 1,261 Bytes
6fe3cfe
 
 
 
 
 
 
f36acdd
 
 
6fe3cfe
 
 
 
 
 
 
 
 
 
5011d78
6fe3cfe
 
5011d78
6fe3cfe
 
 
 
 
 
 
 
 
012faac
6fe3cfe
e1523a6
6fe3cfe
012faac
5011d78
 
012faac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
tags:
- adapter-transformers
- roberta
- adapterhub:sentiment/rotten_tomatoes
datasets:
- rotten_tomatoes
pipeline_tag: text-classification
widget:
- text: "Adapters are awesome" 
---

# Adapter `solwol/my-awesome-adapter` for roberta-base

An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sentiment/rotten_tomatoes](https://adapterhub.ml/explore/sentiment/rotten_tomatoes/) dataset and includes a prediction head for classification.

This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library.

## Usage

First, install `transformers` and `adapters`:

```
pip install -U transformers adapters
```

Now, the adapter can be loaded and activated like this:

```python
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("roberta-base")
adapter_name = model.load_adapter("solwol/my-awesome-adapter", source="hf", set_active=True)
adapter_name 
```
Next, to perform sentiment classification:

```python
from transformers import AutoTokenizer, TextClassificationPipeline

tokenizer = AutoTokenizer.from_pretrained("roberta-base")
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
classfifier("Adapters are awesome!")
```