File size: 1,464 Bytes
b836d92 156352a b836d92 765a274 b836d92 4e6b43b b836d92 4e6b43b b836d92 e5ad988 b836d92 e5ad988 b836d92 e5ad988 b836d92 e5ad988 b836d92 4e6b43b b836d92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
language:
- ca
- en
tags:
- translation
library_name: opennmt
license: mit
metrics:
- bleu
inference: false
---
### Introduction
English - Catalan translation model based on OpenNMT. These are the same models that we have in production at https://www.softcatala.org/traductor/.
### Usage
```bash
pip3 install ctranslate2 pyonmttok
```
Simple translation using Python:
```python
import ctranslate2
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="softcatala/opennmt-eng-cat", revision="main")
translator = ctranslate2.Translator(model_dir)
print(translator.translate_batch([["▁Hello", "▁world", "!"]]))
[[{'tokens': ['▁Hola', '▁món', '!']}]]
```
Simple tokenization & translation using Python:
```python
import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="softcatala/opennmt-eng-cat", revision="main")
tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/sp_m.model")
tokenized=tokenizer.tokenize("Hello world!")
import ctranslate2
translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))
Hola món!
```
## Benchmarks
| testset | BLEU |
|---------------------------------------|-------|
| test dataset (from train/dev/test) | 45.2 |
| Flores101 dataset | 40.7 |
|