File size: 21,976 Bytes
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd0618a
 
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa6ba7
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa6ba7
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa6ba7
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa6ba7
5e1cfb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa6ba7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import math
import random
from collections import OrderedDict
from typing import Literal

import torch
from timm.layers import DropPath, Mlp
from timm.models.vision_transformer import LayerScale
from torch import nn
from torch.nn import functional as F
from torch.nn.attention import SDPBackend, sdpa_kernel


class Attention(nn.Module):
    """
    Multi-head attention module with optional query/key normalization.

    :param dim: Total feature dimension.
    :param num_heads: Number of attention heads.
    :param qkv_bias: Whether to include bias terms in linear projections.
    :param qk_norm: Whether to apply LayerNorm to individual head queries and keys.
    :param attn_drop: Dropout probability for attention weights.
    :param proj_drop: Dropout probability after the output projection.
    :param norm_layer: Normalization layer to use if qk_norm is True.

    :return: Output tensor of shape (B, N1, dim) after attention and projection.
    """

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, 2 * dim, bias=qkv_bias)

        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = attn_drop
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
        """
        Forward pass for multi-head attention.

        :param x: Query tensor of shape (B, N1, dim).
        :param z: Key/Value tensor of shape (B, N2, dim).
        :return: Attention output tensor of shape (B, N1, dim).
        """
        B, N1, C = x.shape
        B, N2, C = z.shape

        q = self.q(x).reshape([B, N1, self.num_heads, self.head_dim]).swapaxes(1, 2)
        kv = (
            self.kv(z)
            .reshape(B, N2, 2, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        k, v = kv.unbind(0)

        q, k = self.q_norm(q), self.k_norm(k)
        with sdpa_kernel(
            [
                SDPBackend.MATH,
            ]
        ):
            x = F.scaled_dot_product_attention(
                query=q, key=k, value=v, dropout_p=self.attn_drop, scale=self.scale
            )

        x = x.transpose(1, 2).reshape(B, N1, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        proj_drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values: float = None,
        drop_path: float = 0.0,
        act_layer: nn.Module = nn.GELU,
        norm_layer: nn.Module = nn.LayerNorm,
        mlp_layer: nn.Module = Mlp,
    ) -> None:
        """
        Transformer block combining attention and MLP with residual connections and optional LayerScale and DropPath.

        :param dim: Feature dimension.
        :param num_heads: Number of attention heads.
        :param mlp_ratio: Ratio for hidden dimension in MLP.
        :param qkv_bias: Whether to include bias in QKV projections.
        :param qk_norm: Whether to normalize Q and K.
        :param proj_drop: Dropout probability after output projection.
        :param attn_drop: Dropout probability for attention.
        :param init_values: Initial value for LayerScale (if None, LayerScale is Identity).
        :param drop_path: Dropout probability for stochastic depth.
        :param act_layer: Activation layer for MLP.
        :param norm_layer: Normalization layer.
        :param mlp_layer: MLP module class.

        :return: Output tensor of shape (B, N, dim).
        """
        super().__init__()
        self.x_norm = nn.LayerNorm(dim)
        self.z_norm = nn.LayerNorm(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )

        self.ls1 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
        """
        Forward pass for a transformer block.

        :param x: Input tensor of shape (B, N, dim).
        :param z: Conditioning tensor for attention of same shape.
        :return: Output tensor of same shape after attention and MLP.
        """
        x = x + self.drop_path1(self.ls1(self.attn(self.x_norm(x), self.z_norm(z))))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class HistaugModel(nn.Module):
    """
    Hierarchical augmentation transformer model for embedding input features and augmentations.

    :param input_dim: Dimensionality of raw input features.
    :param depth: Number of transformer blocks.
    :param num_heads: Number of attention heads.
    :param mlp_ratio: Ratio for hidden features in MLP layers.
    :param use_transform_pos_embeddings: Whether to include sequence positional embeddings for augmentations.
    :param positional_encoding_type: Type for transform positional embeddings ('learnable' or 'sinusoidal').
    :param final_activation: Name of activation layer for final head.
    :param chunk_size: Number of chunks to split the input.
    :param transforms: Dictionary containing augmentation parameter configurations.
    :param device: Device for tensors and buffers.
    :param kwargs: Additional unused keyword arguments.

    :return: Output tensor of shape (B, input_dim) after augmentation and transformer processing.
    """

    def __init__(
        self,
        input_dim,
        depth,
        num_heads,
        mlp_ratio,
        use_transform_pos_embeddings=True,
        positional_encoding_type="learnable",  # New parameter
        final_activation="Identity",
        chunk_size=16,
        transforms=None,
        device=torch.device("cpu"),
        **kwargs,
    ):
        super().__init__()
        # Features embedding
        assert input_dim % chunk_size == 0, "input_dim must be divisble by chunk_size"

        self.input_dim = input_dim

        self.chunk_size = chunk_size
        self.transforms_parameters = transforms["parameters"]
        self.aug_param_names = sorted(self.transforms_parameters.keys())

        self.use_transform_pos_embeddings = use_transform_pos_embeddings
        self.positional_encoding_type = (
            positional_encoding_type  # Store the new parameter
        )
        self.num_classes = 0
        self.num_features = 0
        self.num_classes = 0
        self.embed_dim = self.input_dim // self.chunk_size
        self.chunk_pos_embeddings = self._get_sinusoidal_embeddings(
            self.chunk_size, self.embed_dim
        )
        self.register_buffer("chunk_pos_embeddings_buffer", self.chunk_pos_embeddings)
        if use_transform_pos_embeddings:
            if positional_encoding_type == "learnable":
                self.sequence_pos_embedding = nn.Embedding(
                    len(transforms["parameters"]), self.embed_dim
                )
            elif positional_encoding_type == "sinusoidal":
                sinusoidal_embeddings = self._get_sinusoidal_embeddings(
                    len(transforms["parameters"]), self.embed_dim
                )
                self.register_buffer("sequence_pos_embedding", sinusoidal_embeddings)
            else:
                raise ValueError(
                    f"Invalid positional_encoding_type: {positional_encoding_type}. Choose 'learnable' or 'sinusoidal'."
                )
        else:
            print("Do not use transform positional embeddings")

        self.transform_embeddings = self._get_transforms_embeddings(
            transforms["parameters"], self.embed_dim
        )

        self.features_embed = nn.Sequential(
            nn.Linear(input_dim, self.embed_dim), nn.LayerNorm(self.embed_dim)
        )

        self.blocks = nn.ModuleList(
            [
                Block(dim=self.embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio)
                for _ in range(depth)
            ]
        )
        self.norm = nn.LayerNorm(self.embed_dim)

        if hasattr(nn, final_activation):
            self.final_activation = getattr(nn, final_activation)()
        else:
            raise ValueError(f"Activation {final_activation} is not found in torch.nn")

        self.head = nn.Sequential(
            nn.Linear(input_dim, input_dim), self.final_activation
        )

    def _get_sinusoidal_embeddings(self, num_positions, embed_dim):
        """
        Create sinusoidal embeddings for positional encoding.

        :param num_positions: Number of positions to encode.
        :param embed_dim: Dimensionality of each embedding vector.
        :return: Tensor of shape (num_positions, embed_dim) containing positional encodings.
        """
        assert embed_dim % 2 == 0, "embed_dim must be even"
        position = torch.arange(
            0, num_positions, dtype=torch.float
        ).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, embed_dim, 2, dtype=torch.float)
            * (-math.log(10000.0) / embed_dim)
        )  # (embed_dim/2)

        pe = torch.zeros(num_positions, embed_dim)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        return pe

    def _get_transforms_embeddings(self, transforms, embed_dim):
        """
        Create embedding modules for each augmentation parameter.

        :param transforms: Mapping of augmentation names to configuration.
        :param embed_dim: Dimensionality of the embeddings.
        :return: ModuleDict of embeddings for each augmentation type.
        """
        transform_embeddings = nn.ModuleDict()
        for aug_name in transforms:
            if aug_name in [
                "rotation",
                "h_flip",
                "v_flip",
                "gaussian_blur",
                "erosion",
                "dilation",
            ]:
                # Discrete transformations
                transform_embeddings[aug_name] = nn.Embedding(
                    num_embeddings=2 if aug_name != "rotation" else 4,
                    embedding_dim=embed_dim,
                )
            elif aug_name in ["crop"]:
                # Discrete transformations
                transform_embeddings[aug_name] = nn.Embedding(
                    num_embeddings=6, embedding_dim=embed_dim
                )
            elif aug_name in [
                "brightness",
                "contrast",
                "saturation",
                "hed",
                "hue",
                "powerlaw",
            ]:
                # Continuous transformations
                transform_embeddings[aug_name] = nn.Sequential(
                    nn.Linear(1, embed_dim * 2),
                    nn.SiLU(),
                    nn.Linear(embed_dim * 2, embed_dim),
                )
            else:
                raise ValueError(
                    f"{aug_name} is not a valid augmentation parameter name"
                )
        return transform_embeddings

    def forward_aug_params_embed(self, aug_params):
        """
        Embed augmentation parameters and add positional embeddings if enabled.

        :param aug_params: OrderedDict mapping augmentation names to (value_tensor, position_tensor).
        :return: Tensor of shape (B, K, embed_dim) of embedded transform tokens.
        """
        z_transforms = []
        for aug_name, (aug_param, pos) in aug_params.items():
            if aug_name in [
                "rotation",
                "h_flip",
                "v_flip",
                "gaussian_blur",
                "erosion",
                "dilation",
                "crop",
            ]:
                z_transform = self.transform_embeddings[aug_name](aug_param)
            elif aug_name in [
                "brightness",
                "contrast",
                "saturation",
                "hue",
                "powerlaw",
                "hed",
            ]:
                z_transform = self.transform_embeddings[aug_name](
                    aug_param[..., None].float()
                )
            else:
                raise ValueError(
                    f"{aug_name} is not a valid augmentation parameter name"
                )
            # Add positional embedding if specified
            if self.use_transform_pos_embeddings:
                if self.positional_encoding_type == "learnable":
                    pos_index = torch.as_tensor(pos, device=aug_param.device)
                    pos_embedding = self.sequence_pos_embedding(pos_index)
                elif self.positional_encoding_type == "sinusoidal":
                    pos_embedding = self.sequence_pos_embedding[pos].to(
                        aug_param.device
                    )
                else:
                    raise ValueError(
                        f"Invalid positional_encoding_type: {self.positional_encoding_type}"
                    )
                z_transform_with_pos = z_transform + pos_embedding
                z_transforms.append(z_transform_with_pos)
            else:
                z_transforms.append(z_transform)

        # Stack the list of embeddings along a new dimension
        z_transforms = torch.stack(z_transforms, dim=1)
        return z_transforms

    def sample_aug_params(
        self,
        batch_size: int,
        device: torch.device = torch.device("cuda"),
        mode: Literal["instance_wise", "wsi_wise"] = "wsi_wise",
    ):
        """
        Sample random augmentation parameters and their relative positions.

        If a transform from the supported list is missing in self.aug_param_names,
        include it with zero values and append it at unique tail positions.
        """
        if mode not in ("instance_wise", "wsi_wise"):
            raise ValueError('mode must be "instance_wise" or "wsi_wise"')

        supported_aug_names = [
            "rotation",
            "crop",
            "h_flip",
            "v_flip",
            "gaussian_blur",
            "erosion",
            "dilation",
            "brightness",
            "contrast",
            "saturation",
            "hue",
            "powerlaw",
            "hed",
        ]

        canonical_names = sorted(self.transforms_parameters.keys())
        num_transforms = len(canonical_names)

        # Determine which supported transforms are missing from the current configuration.
        # For any missing transform, we will still include it in augmentation_parameters
        # so that the downstream model sees a consistent set of transforms.
        # These missing transforms are initialized with zero values (i.e., identity / no-op)
        # and assigned unique tail positions after all configured transforms.
        missing_names = [n for n in supported_aug_names if n not in canonical_names]
        required_positions = num_transforms + len(missing_names)

        # Build permutation/positions for configured transforms only
        if mode == "instance_wise":
            permutation_matrix = (
                torch.stack(
                    [
                        torch.randperm(num_transforms, device=device)
                        for _ in range(batch_size)
                    ],
                    dim=0,
                )
                if num_transforms > 0
                else torch.empty((batch_size, 0), dtype=torch.long, device=device)
            )
        else:  # wsi_wise
            if num_transforms > 0:
                single_permutation = torch.randperm(num_transforms, device=device)
                permutation_matrix = single_permutation.unsqueeze(0).repeat(
                    batch_size, 1
                )
            else:
                permutation_matrix = torch.empty(
                    (batch_size, 0), dtype=torch.long, device=device
                )

        positions_matrix = (
            torch.argsort(permutation_matrix, dim=1)
            if num_transforms > 0
            else torch.empty((batch_size, 0), dtype=torch.long, device=device)
        )

        augmentation_parameters = OrderedDict()
        # --- sample configured transforms as before ---
        for transform_index, name in enumerate(canonical_names):
            config = self.transforms_parameters[name]

            if name == "rotation":
                probability = float(config)
                if mode == "instance_wise":
                    apply_mask = torch.rand(batch_size, device=device) < probability
                    random_angles = torch.randint(0, 4, (batch_size,), device=device)
                    random_angles[~apply_mask] = 0
                    value_tensor = random_angles
                else:
                    apply = random.random() < probability
                    angle = random.randint(1, 3) if apply else 0
                    value_tensor = torch.full(
                        (batch_size,), angle, dtype=torch.int64, device=device
                    )

            elif name == "crop":
                probability = float(config)
                if mode == "instance_wise":
                    apply_mask = torch.rand(batch_size, device=device) < probability
                    random_crops = torch.randint(0, 5, (batch_size,), device=device)
                    random_crops[~apply_mask] = 0
                    value_tensor = random_crops
                else:
                    apply = random.random() < probability
                    crop_code = random.randint(1, 4) if apply else 0
                    value_tensor = torch.full(
                        (batch_size,), crop_code, dtype=torch.int64, device=device
                    )

            elif name in ("h_flip", "v_flip", "gaussian_blur", "erosion", "dilation"):
                probability = float(config)
                if mode == "instance_wise":
                    value_tensor = (
                        torch.rand(batch_size, device=device) < probability
                    ).int()
                else:
                    bit = int(random.random() < probability)
                    value_tensor = torch.full(
                        (batch_size,), bit, dtype=torch.int32, device=device
                    )

            elif name in (
                "brightness",
                "contrast",
                "saturation",
                "hue",
                "powerlaw",
                "hed",
            ):
                lower_bound, upper_bound = map(float, config)
                if mode == "instance_wise":
                    value_tensor = torch.empty(batch_size, device=device).uniform_(
                        lower_bound, upper_bound
                    )
                else:
                    scalar_value = random.uniform(lower_bound, upper_bound)
                    value_tensor = torch.full(
                        (batch_size,), scalar_value, dtype=torch.float32, device=device
                    )

            else:
                raise ValueError(f"'{name}' is not a recognised augmentation name")

            position_tensor = positions_matrix[:, transform_index]
            augmentation_parameters[name] = (value_tensor, position_tensor)

        for i, name in enumerate(missing_names):
            if name in ("rotation", "crop"):
                zeros = torch.zeros(batch_size, dtype=torch.int64, device=device)
            elif name in ("h_flip", "v_flip", "gaussian_blur", "erosion", "dilation"):
                zeros = torch.zeros(batch_size, dtype=torch.int32, device=device)
            else:  # continuous
                zeros = torch.zeros(batch_size, dtype=torch.float32, device=device)

            tail_pos = num_transforms + i  # unique: K, K+1, ..., K+M-1
            pos = torch.full((batch_size,), tail_pos, dtype=torch.long, device=device)
            augmentation_parameters[name] = (zeros, pos)

        return augmentation_parameters

    def forward(self, x, aug_params, **kwargs):
        """
        Forward pass: embed features, apply transformer blocks, and produce output.

        :param x: Input tensor of shape (B, input_dim).
        :param aug_params: Augmentation parameters from sample_aug_params.
        :return: Output tensor of shape (B, input_dim).
        """

        x = x[:, None, :]

        x = x.view(x.shape[0], self.chunk_size, self.embed_dim)
        pos_embeddings = self.chunk_pos_embeddings_buffer.unsqueeze(0)
        x = x + pos_embeddings
        z = self.forward_aug_params_embed(aug_params)

        for block in self.blocks:
            x = block(x, z)
        x = self.norm(x)

        x = x.view(x.shape[0], 1, -1)
        x = self.head(x)
        x = x[:, 0, :]
        return x