File size: 4,472 Bytes
b6af7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# %%
from tqdm import tqdm
import unicodedata
import re
import pickle
import torch
import NER_medNLP as ner
from bs4 import BeautifulSoup
# import from_XML_to_json as XtC
# import itertools
# import random
# import json
# from torch.utils.data import DataLoader
# from transformers import BertJapaneseTokenizer, BertForTokenClassification
# import pytorch_lightning as pl
# import pandas as pd
# import numpy as np
# import codecs
#%% global変数として使う
dict_key = {}
#%%
def to_xml(data):
with open("key_attr.pkl", "rb") as tf:
key_attr = pickle.load(tf)
text = data['text']
count = 0
for i, entities in enumerate(data['entities_predicted']):
if entities == "":
return
span = entities['span']
type_id = id_to_tags[entities['type_id']].split('_')
tag = type_id[0]
if not type_id[1] == "":
attr = ' ' + value_to_key(type_id[1], key_attr) + '=' + '"' + type_id[1] + '"'
else:
attr = ""
add_tag = "<" + str(tag) + str(attr) + ">"
text = text[:span[0]+count] + add_tag + text[span[0]+count:]
count += len(add_tag)
add_tag = "</" + str(tag) + ">"
text = text[:span[1]+count] + add_tag + text[span[1]+count:]
count += len(add_tag)
return text
def predict_entities(modelpath, sentences_list, len_num_entity_type):
# model = ner.BertForTokenClassification_pl.load_from_checkpoint(
# checkpoint_path = modelpath + ".ckpt"
# )
# bert_tc = model.bert_tc.cuda()
model = ner.BertForTokenClassification_pl(modelpath, num_labels=81, lr=1e-5)
bert_tc = model.bert_tc.cuda()
MODEL_NAME = 'cl-tohoku/bert-base-japanese-whole-word-masking'
tokenizer = ner.NER_tokenizer_BIO.from_pretrained(
MODEL_NAME,
num_entity_type = len_num_entity_type#Entityの数を変え忘れないように!
)
#entities_list = [] # 正解の固有表現を追加していく
entities_predicted_list = [] # 抽出された固有表現を追加していく
text_entities_set = []
for dataset in sentences_list:
text_entities = []
for sample in tqdm(dataset):
text = sample
encoding, spans = tokenizer.encode_plus_untagged(
text, return_tensors='pt'
)
encoding = { k: v.cuda() for k, v in encoding.items() }
with torch.no_grad():
output = bert_tc(**encoding)
scores = output.logits
scores = scores[0].cpu().numpy().tolist()
# 分類スコアを固有表現に変換する
entities_predicted = tokenizer.convert_bert_output_to_entities(
text, scores, spans
)
#entities_list.append(sample['entities'])
entities_predicted_list.append(entities_predicted)
text_entities.append({'text': text, 'entities_predicted': entities_predicted})
text_entities_set.append(text_entities)
return text_entities_set
def combine_sentences(text_entities_set, insert: str):
documents = []
for text_entities in tqdm(text_entities_set):
document = []
for t in text_entities:
document.append(to_xml(t))
documents.append('\n'.join(document))
return documents
def value_to_key(value, key_attr):#attributeから属性名を取得
global dict_key
if dict_key.get(value) != None:
return dict_key[value]
for k in key_attr.keys():
for v in key_attr[k]:
if value == v:
dict_key[v]=k
return k
# %%
if __name__ == '__main__':
with open("id_to_tags.pkl", "rb") as tf:
id_to_tags = pickle.load(tf)
with open("key_attr.pkl", "rb") as tf:
key_attr = pickle.load(tf)
with open('text.txt') as f:
articles_raw = f.read()
article_norm = unicodedata.normalize('NFKC', articles_raw)
sentences_raw = [s for s in re.split(r'\n', articles_raw) if s != '']
sentences_norm = [s for s in re.split(r'\n', article_norm) if s != '']
text_entities_set = predict_entities("Tomohiro/RealMedNLP_CR_JA", [sentences_norm], len(id_to_tags))
for i, texts_ent in enumerate(text_entities_set[0]):
texts_ent['text'] = sentences_raw[i]
documents = combine_sentences(text_entities_set, '\n')
print(documents[0])
|