File size: 2,094 Bytes
fe6f914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 20231008-5-distilbert-base-multilingual-cased-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 20231008-5-distilbert-base-multilingual-cased-new
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.5614
- Loss: 1.9964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 2.9949 | 1.82 | 200 | 0.3868 | 2.5810 |
| 2.5887 | 3.64 | 400 | 0.4463 | 2.5529 |
| 2.3369 | 5.45 | 600 | 0.4665 | 2.4076 |
| 2.2815 | 7.27 | 800 | 0.5133 | 2.2435 |
| 2.1494 | 9.09 | 1000 | 0.5 | 2.1755 |
| 2.0746 | 10.91 | 1200 | 0.5523 | 1.9893 |
| 1.9617 | 12.73 | 1400 | 0.5648 | 1.8462 |
| 1.9549 | 14.55 | 1600 | 0.5392 | 1.8725 |
| 1.9192 | 16.36 | 1800 | 0.5605 | 2.0018 |
| 1.8967 | 18.18 | 2000 | 0.6077 | 1.7557 |
| 1.899 | 20.0 | 2200 | 0.5614 | 1.9964 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|