File size: 3,103 Bytes
806f077 820c520 806f077 f858628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- ko
---
# KR-FinBert & KR-FinBert-SC
Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adaptation using small-scale corpus and fine-tuning with labeled data is effective for overall performance improvement.
we proposed KR-FinBert for the financial domain by further pre-training it on a financial corpus and fine-tuning it for sentiment analysis. As many studies have shown, the performance improvement through adaptation and conducting the downstream task was also clear in this experiment.
![KR-FinBert](https://huggingface.co/snunlp/KR-FinBert/resolve/main/images/KR-FinBert.png)
## Data
The training data for this model is expanded from those of **[KR-BERT-MEDIUM](https://huggingface.co/snunlp/KR-Medium)**, texts from Korean Wikipedia, general news articles, legal texts crawled from the National Law Information Center and [Korean Comments dataset](https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments). For the transfer learning, **corporate related economic news articles from 72 media sources** such as the Financial Times, The Korean Economy Daily, etc and **analyst reports from 16 securities companies** such as Kiwoom Securities, Samsung Securities, etc are added. Included in the dataset is 440,067 news titles with their content and 11,237 analyst reports. **The total data size is about 13.22GB.** For mlm training, we split the data line by line and **the total no. of lines is 6,379,315.**
KR-FinBert is trained for 5.5M steps with the maxlen of 512, training batch size of 32, and learning rate of 5e-5, taking 67.48 hours to train the model using NVIDIA TITAN XP.
## Downstream tasks
### Sentimental Classification model
Downstream task performances with 50,000 labeled data.
|Model|Accuracy|
|-|-|
|KR-FinBert|0.963|
|KR-BERT-MEDIUM|0.958|
|KcBert-large|0.955|
|KcBert-base|0.953|
|KoBert|0.817|
### Inference sample
|Positive|Negative|
|-|-|
|ํ๋๋ฐ์ด์ค, 'ํด๋ฆฌํ์
' ์ฝ๋ก๋19 ์น๋ฃ ๊ฐ๋ฅ์ฑ์ 19% ๊ธ๋ฑ | ์ํ๊ดๆ ช '์ฝ๋ก๋ ๋นํ๊ธฐ' ์ธ์ ๋๋๋โฆ"CJ CGV ์ฌ 4000์ต ์์ค ๋ ์๋"ย |
|์ด์ํํ, 3๋ถ๊ธฐย ์์
์ตย 176์ตโฆ์ ๋
ๆฏย 80%โ | C์ผํฌ์ย ๋ฉ์ถย ํ์๋นํโฆ๋ํํญ๊ณตย 1๋ถ๊ธฐย ์์
์ ์ย 566์ตย |
|"GKL, 7๋
ย ๋ง์ย ๋ย ์๋ฆฟ์ย ๋งค์ถ์ฑ์ฅย ์์" | '1000์ต๋ย ํก๋ นยท๋ฐฐ์'ย ์ต์ ์ย ํ์ฅ ๊ตฌ์โฆย SK๋คํธ์์คย "๊ฒฝ์ ๊ณต๋ฐฑ ๋ฐฉ์ง ์ต์ "ย |
|์์ง์
์คํ๋์ค, ์ฝํ
์ธ ํ์ฝ์ ์ฌ์ ์ฒซ ๋งค์ถ 1000์ต์ ๋ํ | ๋ถํ ๊ณต๊ธ ์ฐจ์ง์โฆ๊ธฐ์์ฐจย ๊ด์ฃผ๊ณต์ฅ ์ ๋ฉด ๊ฐ๋ ์ค๋จย |
|์ผ์ฑ์ ์, 2๋
๋ง์ ์ธ๋ ์ค๋งํธํฐ ์์ฅ ์ ์ ์จ 1์ '์์ข ํํ' | ํ๋์ ์ฒ , ์ง๋ํดย ์์
์ตย 3,313์ต์ยทยทยท์ ๋
ๆฏย 67.7%ย ๊ฐ์ย |
### Citation
```
@misc{kr-FinBert-SC,
author = {Kim, Eunhee and Hyopil Shin},
title = {KR-FinBert: Fine-tuning KR-FinBert for Sentiment Analysis},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://huggingface.co/snunlp/KR-FinBert-SC}}
}
``` |