File size: 38,932 Bytes
c9d8925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
'''
TTS Preprocessing
Developed by Arun Kumar A(CS20S013) - November 2022
Code Changes by Utkarsh - 2023
'''
import os
import re
import json
import pandas as pd
import string
from collections import defaultdict
import time
import subprocess
import shutil
from multiprocessing import Process
import traceback

#imports of dependencies from environment.yml
from num_to_words import num_to_word
from g2p_en import G2p

def add_to_dictionary(dict_to_add, dict_file):
    append_string = ""
    for key, value in dict_to_add.items():
        append_string += (str(key) + " " + str(value) + "\n")
    
    if os.path.isfile(dict_file):
        # make a copy of the dictionary
        source_dir = os.path.dirname(dict_file)
        dict_file_name = os.path.basename(dict_file)
        temp_file_name = "." + dict_file_name + ".temp"
        temp_dict_file = os.path.join(source_dir, temp_file_name)
        shutil.copy(dict_file, temp_dict_file)
        # append the new words in the dictionary to the temp file
        with open(temp_dict_file, "a") as f:
            f.write(append_string)
        # check if the write is successful and then replace the temp file as the dict file
        try:
            df_orig = pd.read_csv(dict_file, delimiter=" ", header=None, dtype=str)
            df_temp = pd.read_csv(temp_dict_file, delimiter=" ", header=None, dtype=str)
            if len(df_temp) > len(df_orig):
                os.rename(temp_dict_file, dict_file)
                print(f"{len(dict_to_add)} new words appended to Dictionary: {dict_file}")
        except:
            print(traceback.format_exc())
    else:
        # create a new dictionary
        with open(dict_file, "a") as f:
            f.write(append_string)
        print(f"New Dictionary: {dict_file} created with {len(dict_to_add)} words")


class TextCleaner:
    def __init__(self):
        # this is a static set of cleaning rules to be applied
        self.cleaning_rules = {
            " +" : " ",
            "^ +" : "",
            " +$" : "",
            "#" : "",
            "[.,;।!](\r\n)*" : "# ",
            "[.,;।!](\n)*" : "# ",
            "(\r\n)+" : "# ",
            "(\n)+" : "# ",
            "(\r)+" : "# ",
            """[?;:)(!|&’‘,।\."]""": "",
            "[/']" : "",
            "[-–]" : " ",
        }

    def clean(self, text):
        for key, replacement in self.cleaning_rules.items():
            text = re.sub(key, replacement, text)
        return text

    def clean_list(self, text):
        # input is supposed to be a list of strings
        output_text = []
        for line in text:
            line = line.strip()
            for key, replacement in self.cleaning_rules.items():
                line = re.sub(key, replacement, line)
            output_text.append(line)
        return output_text


class Phonifier:
    def __init__(self, dict_location=None):
        if dict_location is None:
            dict_location = "phone_dict"
        self.dict_location = dict_location

        # self.phone_dictionary = {}
        # # load dictionary for all the available languages
        # for dict_file in os.listdir(dict_location):
        #     try:
        #         if dict_file.startswith("."):
        #             # ignore hidden files
        #             continue
        #         language = dict_file
        #         dict_file_path = os.path.join(dict_location, dict_file)
        #         df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
        #         self.phone_dictionary[language] = df.set_index(0).to_dict('dict')[1]
        #     except Exception as e:
        #         print(traceback.format_exc())

        # print("Phone dictionary loaded for the following languages:", list(self.phone_dictionary.keys()))

        self.g2p = G2p()
        print('Loading G2P model... Done!')
        # Mapping between the cmu phones and the iitm cls
        self.cmu_2_cls_map = {
            "AA" : "aa",
            "AA0" : "aa",
            "AA1" : "aa",
            "AA2" : "aa",
            "AE" : "axx",
            "AE0" : "axx",
            "AE1" : "axx",
            "AE2" : "axx",
            "AH" : "a",
            "AH0" : "a",
            "AH1" : "a",
            "AH2" : "a",
            "AO" : "ax",
            "AO0" : "ax",
            "AO1" : "ax",
            "AO2" : "ax",
            "AW" : "ou",
            "AW0" : "ou",
            "AW1" : "ou",
            "AW2" : "ou",
            "AX" : "a",
            "AY" : "ei",
            "AY0" : "ei",
            "AY1" : "ei",
            "AY2" : "ei",
            "B" : "b",
            "CH" : "c",
            "D" : "dx",
            "DH" : "d",
            "EH" : "ee",
            "EH0" : "ee",
            "EH1" : "ee",
            "EH2" : "ee",
            "ER" : "a r",
            "ER0" : "a r",
            "ER1" : "a r",
            "ER2" : "a r",
            "EY" : "ee",
            "EY0" : "ee",
            "EY1" : "ee",
            "EY2" : "ee",
            "F" : "f",
            "G" : "g",
            "HH" : "h",
            "IH" : "i",
            "IH0" : "i",
            "IH1" : "i",
            "IH2" : "i",
            "IY" : "ii",
            "IY0" : "ii",
            "IY1" : "ii",
            "IY2" : "ii",
            "JH" : "j",
            "K" : "k",
            "L" : "l",
            "M" : "m",
            "N" : "n",
            "NG" : "ng",
            "OW" : "o",
            "OW0" : "o",
            "OW1" : "o",
            "OW2" : "o",
            "OY" : "ei",
            "OY0" : "ei",
            "OY1" : "ei",
            "OY2" : "ei",
            "P" : "p",
            "R" : "r",
            "S" : "s",
            "SH" : "sh",
            "T" : "tx",
            "TH" : "t",
            "UH" : "u",
            "UH0" : "u",
            "UH1" : "u",
            "UH2" : "u",
            "UW" : "uu",
            "UW0" : "uu",
            "UW1" : "uu",
            "UW2" : "uu",
            "V" : "w",
            "W" : "w",
            "Y" : "y",
            "Z" : "z",
            "ZH" : "sh",
        }

        # Mapping between the iitm cls and iitm char
        self.cls_2_chr_map = {
            "aa" : "A",
            "ii" : "I",
            "uu" : "U",
            "ee" : "E",
            "oo" : "O",
            "nn" : "N",
            "ae" : "ऍ",
            "ag" : "ऽ",
            "au" : "औ",
            "axx" : "अ",
            "ax" : "ऑ",
            "bh" : "B",
            "ch" : "C",
            "dh" : "ध",
            "dx" : "ड",
            "dxh" : "ढ",
            "dxhq" : "T",
            "dxq" : "D",
            "ei" : "ऐ",
            "ai" : "ऐ",
            "eu" : "உ",
            "gh" : "घ",
            "gq" : "G",
            "hq" : "H",
            "jh" : "J",
            "kh" : "ख",
            "khq" : "K",
            "kq" : "क",
            "ln" : "ൾ",
            "lw" : "ൽ",
            "lx" : "ള",
            "mq" : "M",
            "nd" : "न",
            "ng" : "ङ",
            "nj" : "ञ",
            "nk" : "Y",
            "nw" : "ൺ",
            "nx" : "ण",
            "ou" : "औ",
            "ph" : "P",
            "rq" : "R",
            "rqw" : "ॠ",
            "rw" : "ർ",
            "rx" : "र",
            "sh" : "श",
            "sx" : "ष",
            "th" : "थ",
            "tx" : "ट",
            "txh" : "ठ",
            "wv" : "W",
            "zh" : "Z",
        }

        # Multilingual support for OOV characters
        oov_map_json_file = 'multilingualcharmap.json'
        with open(oov_map_json_file, 'r') as oov_file:
            self.oov_map = json.load(oov_file)



    def load_lang_dict(self, language, phone_dictionary):            
        # load dictionary for requested language
        try:

            dict_file = language
            print("language", language)
            dict_file_path = os.path.join(self.dict_location, dict_file)
            print("dict_file_path", dict_file_path)
            df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
            phone_dictionary[language] = df.set_index(0).to_dict('dict')[1]

            dict_file = 'english'
            dict_file_path = os.path.join(self.dict_location, dict_file)
            df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
            phone_dictionary['english'] = df.set_index(0).to_dict('dict')[1]
            
        except Exception as e:
            print(traceback.format_exc())

        return phone_dictionary

    def __is_float(self, word):
        parts = word.split('.')
        if len(parts) != 2:
            return False
        return parts[0].isdecimal() and parts[1].isdecimal()

    def en_g2p(self, word):
        phn_out = self.g2p(word)
        # print(f"phn_out: {phn_out}")
        # iterate over the string list and replace each word with the corresponding value from the dictionary
        for i, phn in enumerate(phn_out):
            if phn in self.cmu_2_cls_map.keys():
                phn_out[i] = self.cmu_2_cls_map[phn]
                # cls_out = self.cmu_2_cls_map[phn]
                if phn_out[i] in self.cls_2_chr_map.keys():
                    phn_out[i] = self.cls_2_chr_map[phn_out[i]]
                else:
                    pass
            else:
                pass  # ignore words that are not in the dictionary
            # print(f"i: {i}, phn: {phn}, cls_out: {cls_out}, phn_out: {phn_out[i]}")
        return ("".join(phn_out)).strip().replace(" ", "")

    def __post_phonify(self, text, language, gender):
        language_gender_id = language+'_'+gender
        if language_gender_id in self.oov_map.keys():
            output_string = ''
            for char in text:
                if char in self.oov_map[language_gender_id].keys():
                    output_string += self.oov_map[language_gender_id][char]
                else:
                    output_string += char
                # output_string += self.oov_map['language_gender_id']['char']
            return output_string
        else:
            return text

    def __is_english_word(self, word):
        maxchar = max(word)
        if u'\u0000' <= maxchar <= u'\u007f':
            return True
        return False

    def __phonify(self, text, language, gender, phone_dictionary):
        # text is expected to be a list of strings
        words = set((" ".join(text)).split(" "))
        #print(f"words test: {words}")
        non_dict_words = []
       
        
        if language in phone_dictionary:
            for word in words:
                # print(f"word: {word}")
                if word not in phone_dictionary[language] and (language == "english" or (not self.__is_english_word(word))):
                    non_dict_words.append(word)
                    #print('INSIDE IF CONDITION OF ADDING WORDS')
        else:
            non_dict_words = words
        print(f"word not in dict: {non_dict_words}")

        if len(non_dict_words) > 0:
            # unified parser has to be run for the non dictionary words
            os.makedirs("tmp", exist_ok=True)
            timestamp = str(time.time())
            non_dict_words_file = os.path.abspath("tmp/non_dict_words_" + timestamp)
            out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
            with open(non_dict_words_file, "w") as f:
                f.write("\n".join(non_dict_words))

            if(language == 'tamil'):
                current_directory = os.getcwd()
                #tamil_parser_cmd = "tamil_parser.sh"
                tamil_parser_cmd = f"{current_directory}/ssn_parser_new/tamil_parser.py"
                #subprocess.run(["bash", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, "ssn_parser"])
                subprocess.run(["python", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, f"{current_directory}/ssn_parser_new"])
            elif(language == 'english'):
                phn_out_dict = {}
                for i in range(0,len(non_dict_words)):
                    phn_out_dict[non_dict_words[i]] = self.en_g2p(non_dict_words[i])
                # Create a string representation of the dictionary
                data_str = "\n".join([f"{key}\t{value}" for key, value in phn_out_dict.items()])
                print(f"data_str: {data_str}")
                with open(out_dict_file, "w") as f:
                    f.write(data_str)
            else:
          
                out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
                from get_phone_mapped_python import TextReplacer
                
                from indic_unified_parser.uparser import wordparse
                
                text_replacer=TextReplacer()
                # def write_output_to_file(output_text, file_path):
                #     with open(file_path, 'w') as f:
                #         f.write(output_text)
                parsed_output_list = []
                for word in non_dict_words:
                    parsed_word = wordparse(word, 0, 0, 1)
                    parsed_output_list.append(parsed_word)
                replaced_output_list = [text_replacer.apply_replacements(parsed_word) for parsed_word in parsed_output_list]
                with open(out_dict_file, 'w', encoding='utf-8') as file:
                    for original_word, formatted_word in zip(non_dict_words, replaced_output_list):
                        line = f"{original_word}\t{formatted_word}\n"
                        file.write(line)
                        print(line, end='') 
                  

            try:
                
                df = pd.read_csv(out_dict_file, delimiter="\t", header=None, dtype=str)
                #print('DATAFRAME OUTPUT FILE', df.head())
                new_dict = df.dropna().set_index(0).to_dict('dict')[1]
                #print("new dict",new_dict)
                if language not in phone_dictionary:
                    phone_dictionary[language] = new_dict
                else:
                    phone_dictionary[language].update(new_dict)
                # run a non-blocking child process to update the dictionary file
                #print("phone_dict", self.phone_dictionary)
                p = Process(target=add_to_dictionary, args=(new_dict, os.path.join(self.dict_location, language)))
                p.start()
            except Exception as err:
                print(f"Error: While loading {out_dict_file}")
                traceback.print_exc()

        # phonify text with dictionary
        text_phonified = []
        for phrase in text:
            phrase_phonified = []
            for word in phrase.split(" "):
                if self.__is_english_word(word):
                    if word in phone_dictionary["english"]:
                        phrase_phonified.append(str(phone_dictionary["english"][word]))
                    else:
                        phrase_phonified.append(str(self.en_g2p(word)))
                elif word in phone_dictionary[language]:
                    # if a word could not be parsed, skip it
                    phrase_phonified.append(str(phone_dictionary[language][word]))
            # text_phonified.append(self.__post_phonify(" ".join(phrase_phonified),language, gender))
            text_phonified.append(" ".join(phrase_phonified))
        return text_phonified

    def __merge_lists(self, lists):
        merged_string = ""
        for list in lists:
            for word in list:
                merged_string += word + " "
        return merged_string.strip()

    def __phonify_list(self, text, language, gender, phone_dictionary):
        # text is expected to be a list of list of strings
        words = set(self.__merge_lists(text).split(" "))
        non_dict_words = []
        if language in phone_dictionary:
            for word in words:
                if word not in phone_dictionary[language] and (language == "english" or (not self.__is_english_word(word))):
                    non_dict_words.append(word)
        else:
            non_dict_words = words

        if len(non_dict_words) > 0:
            print(len(non_dict_words))
            print(non_dict_words)
            # unified parser has to be run for the non dictionary words
            os.makedirs("tmp", exist_ok=True)
            timestamp = str(time.time())
            non_dict_words_file = os.path.abspath("tmp/non_dict_words_" + timestamp)
            out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
            with open(non_dict_words_file, "w") as f:
                f.write("\n".join(non_dict_words))

            if(language == 'tamil'):
                current_directory = os.getcwd()
                #tamil_parser_cmd = "tamil_parser.sh"
                tamil_parser_cmd = f"{current_directory}/ssn_parser_new/tamil_parser.py"
                #subprocess.run(["bash", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, "ssn_parser"])
                subprocess.run(["python", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, f"{current_directory}/ssn_parser_new"])
                
            elif(language == 'english'):
                phn_out_dict = {}
                for i in range(0,len(non_dict_words)):
                    phn_out_dict[non_dict_words[i]] = self.en_g2p(non_dict_words[i])
                # Create a string representation of the dictionary
                data_str = "\n".join([f"{key}\t{value}" for key, value in phn_out_dict.items()])
                print(f"data_str: {data_str}")
                with open(out_dict_file, "w") as f:
                    f.write(data_str)
            else:
                out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
                from get_phone_mapped_python import TextReplacer
                
                from indic_unified_parser.uparser import wordparse
                
                text_replacer=TextReplacer()
            
                parsed_output_list = []
                for word in non_dict_words:
                    parsed_word = wordparse(word, 0, 0, 1)
                    parsed_output_list.append(parsed_word)
                replaced_output_list = [text_replacer.apply_replacements(parsed_word) for parsed_word in parsed_output_list]
                with open(out_dict_file, 'w', encoding='utf-8') as file:
                    for original_word, formatted_word in zip(non_dict_words, replaced_output_list):
                        line = f"{original_word}\t{formatted_word}\n"
                        file.write(line)
                        print(line, end='') 
        
            try:
                df = pd.read_csv(out_dict_file, delimiter="\t", header=None, dtype=str)
                new_dict = df.dropna().set_index(0).to_dict('dict')[1]
                print(new_dict)
                if language not in phone_dictionary:
                    phone_dictionary[language] = new_dict
                else:
                    phone_dictionary[language].update(new_dict)
                # run a non-blocking child process to update the dictionary file
                p = Process(target=add_to_dictionary, args=(new_dict, os.path.join(self.dict_location, language)))
                p.start()
            except Exception as err:
                traceback.print_exc()

        # phonify text with dictionary
        text_phonified = []
        for line in text:
            line_phonified = []
            for phrase in line:
                phrase_phonified = []
                for word in phrase.split(" "):
                    if self.__is_english_word(word):
                        if word in phone_dictionary["english"]:
                            phrase_phonified.append(str(phone_dictionary["english"][word]))
                        else:
                            phrase_phonified.append(str(self.en_g2p(word)))
                    elif word in phone_dictionary[language]:
                        # if a word could not be parsed, skip it
                        phrase_phonified.append(str(phone_dictionary[language][word]))
                # line_phonified.append(self.__post_phonify(" ".join(phrase_phonified), language, gender))
                line_phonified.append(" ".join(phrase_phonified))
            text_phonified.append(line_phonified)
        return text_phonified

    def phonify(self, text, language, gender, phone_dictionary):
        if not isinstance(text, list):
            out = self.__phonify([text], language, gender)
            return out[0]
        return self.__phonify(text, language, gender, phone_dictionary)
    
    def phonify_list(self, text, language, gender, phone_dictionary):
        if isinstance(text, list):
            return self.__phonify_list(text, language, gender, phone_dictionary)
        else:
            print("Error!! Expected to have a list as input.")


class TextNormalizer:
    def __init__(self, char_map_location=None, phonifier = Phonifier()):
        self.phonifier = phonifier
        if char_map_location is None:
            char_map_location = "charmap"
    
        # this is a static set of cleaning rules to be applied
        self.cleaning_rules = {
            " +" : " ",
            "^ +" : "",
            " +$" : "",
            "#$" : "",
            "# +$" : "",
        }

        # this is the list of languages supported by num_to_words
        self.keydict = {"english" : "en",
            "hindi" : "hi",
            "gujarati" : "gu",
            "marathi" : "mr",
            "bengali" : "bn",
            "telugu" : "te",
            "tamil" : "ta",
            "kannada" : "kn",
            "odia" : "or",
            "punjabi" : "pa"
        }
        
        self.g2p = G2p()
        print('Loading G2P model... Done!')

    def __post_cleaning(self, text):
        for key, replacement in self.cleaning_rules.items():
            text = re.sub(key, replacement, text)
        return text

    def __post_cleaning_list(self, text):
        # input is supposed to be a list of strings
        output_text = []
        for line in text:
            for key, replacement in self.cleaning_rules.items():
                line = re.sub(key, replacement, line)
            output_text.append(line)
        return output_text

    def __check_char_type(self, str_c):
        # Determine the type of the character
        if str_c.isnumeric():
            char_type = "number"
        elif str_c in string.punctuation:
            char_type = "punctuation"
        elif str_c in string.whitespace:
            char_type = "whitespace"
        elif str_c.isalpha() and str_c.isascii():
            char_type = "ascii"
        else:
            char_type = "non-ascii"
        return char_type
    
    def insert_space(self, text):
        '''
        Check if the text contains numbers and English words and if they are without space inserts space between them.
        '''
        # Initialize variables to track the previous character type and whether a space should be inserted
        prev_char_type = None
        next_char_type = None
        insert_space = False

        # Output string
        output_string = ""

        # Iterate through each character in the text
        for i, c in enumerate(text):
            # Determine the type of the character
            char_type = self.__check_char_type(c)
            if i == (len(text) - 1):
                next_char_type = None
            else:
                next_char_type = self.__check_char_type(text[i+1])
            # print(f"{i}: {c} is a {char_type} character and next character is a {next_char_type}")

            # If the character type has changed from the previous character, check if a space should be inserted
            if (char_type != prev_char_type and prev_char_type != None and char_type != "punctuation" and char_type != "whitespace"):
                if next_char_type != "punctuation" or next_char_type != "whitespace":
                    insert_space = True

            # Insert a space if needed
            if insert_space:
                output_string += " "+c
                insert_space = False
            else:
                output_string += c

            # Update the previous character type
            prev_char_type = char_type

        # Print the modified text
        output_string = re.sub(r' +', ' ', output_string)
        return output_string

    def insert_space_list(self, text):
        '''
        Expect the input to be in form of list of string.
        Check if the text contains numbers and English words and if they are without space inserts space between them.
        '''
        # Output string list
        output_list = []

        for line in text:
            # Initialize variables to track the previous character type and whether a space should be inserted
            prev_char_type = None
            next_char_type = None
            insert_space = False
            # Output string
            output_string = ""
            # Iterate through each character in the line
            for i, c in enumerate(line):
                # Determine the type of the character
                char_type = self.__check_char_type(c)
                if i == (len(line) - 1):
                    next_char_type = None
                else:
                    next_char_type = self.__check_char_type(line[i+1])
                # print(f"{i}: {c} is a {char_type} character and next character is a {next_char_type}")

                # If the character type has changed from the previous character, check if a space should be inserted
                if (char_type != prev_char_type and prev_char_type != None and char_type != "punctuation" and char_type != "whitespace"):
                    if next_char_type != "punctuation" or next_char_type != "whitespace":
                        insert_space = True

                # Insert a space if needed
                if insert_space:
                    output_string += " "+c
                    insert_space = False
                else:
                    output_string += c

                # Update the previous character type
                prev_char_type = char_type

            # Print the modified line
            output_string = re.sub(r' +', ' ', output_string)
            output_list.append(output_string)
        return output_list

    def num2text(self, text, language):
        if language in self.keydict.keys():
            digits = sorted(list(map(int, re.findall(r'\d+', text))),reverse=True)
            if digits:
                for digit in digits:
                    text = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language])+' ', text)
            return self.__post_cleaning(text)
        else:
            print(f"No num-to-char for the given language {language}.")
            return self.__post_cleaning(text)

    def num2text_list(self, text, language):
        # input is supposed to be a list of strings
        if language in self.keydict.keys():
            output_text = []
            for line in text:
                digits = sorted(list(map(int, re.findall(r'\d+', line))),reverse=True)
                if digits:
                    for digit in digits:
                        line = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language])+' ', line)
                output_text.append(line)
            return self.__post_cleaning_list(output_text)
        else:
            print(f"No num-to-char for the given language {language}.")
            return self.__post_cleaning_list(text)
        
    def numberToTextConverter(self, text, language):
        if language in self.keydict.keys():
            matches = re.findall(r'\d+\.\d+|\d+', text)
            digits = sorted([int(match) if match.isdigit() else match if re.match(r'^\d+(\.\d+)?$', match) else str(match) for match in matches], key=lambda x: float(x) if isinstance(x, str) and '.' in x else x, reverse=True)
            if digits:
                for digit in digits:
                        
                    if isinstance(digit, int):
                        text = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language]).replace(",", "")+' ', text)
                    else:
                        parts = str(digit).split('.')
                        integer_part = int(parts[0])
                        data1 = num_to_word(integer_part, self.keydict[language]).replace(",", "")
                        decimal_part = str(parts[1])
                        data2 = ''
                        for i in decimal_part:
                            data2 = data2+' '+num_to_word(i, self.keydict[language])
                        if language == 'hindi':
                            final_data = f'{data1} दशमलव {data2}'
                        elif language == 'tamil':
                            final_data = f'{data1} புள்ளி {data2}'
                        else:
                            final_data = f'{data1} point {data2}'

                            
                        text = re.sub(str(digit), ' '+final_data+' ', text)

            return self.__post_cleaning(text)
        else:


            words = {
                '0': 'zero', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
                '5': 'five', '6': 'six', '7': 'seven', '8': 'eight', '9': 'nine'
            }


            # Use regular expression to find and replace decimal points in numbers
            text = re.sub(r'(?<=\d)\.(?=\d)', ' point ', text)

            # Find all occurrences of numbers with decimal points and convert them to words
            matches = re.findall(r'point (\d+)', text)

            for match in matches:
                replacement = ' '.join(words[digit] for digit in match)
                text = text.replace(f'point {match}', f'point {replacement}', 1)


            return self.__post_cleaning(text)


    def normalize(self, text, language):
        return self.__post_cleaning(text)

    def normalize_list(self, text, language):
        # input is supposed to be a list of strings
        return self.__post_cleaning_list(text)


class TextPhrasifier:
    @classmethod
    def phrasify(cls, text):
        phrase_list = []
        for phrase in text.split("#"):
            phrase = phrase.strip()
            if phrase != "":
                phrase_list.append(phrase)
        return phrase_list

class TextPhrasifier_List:
    @classmethod
    def phrasify(cls, text):
        # input is supposed to be a list of strings
        # output is list of list of strings
        output_list = []
        for line in text:
            phrase_list = []
            for phrase in line.split("#"):
                phrase = phrase.strip()
                if phrase != "":
                    phrase_list.append(phrase)
            output_list.append(phrase_list)
        return output_list

class DurAlignTextProcessor:
    def __init__(self):
        # this is a static set of cleaning rules to be applied
        self.cleaning_rules = {
            " +" : "",
           "^" : "$",
            "$" : ".",
        }
        self.cleaning_rules_English = {
            " +" : "",
            "$" : ".",
        }
    def textProcesor(self, text):
        for key, replacement in self.cleaning_rules.items():
            for idx in range(0,len(text)):
                text[idx] = re.sub(key, replacement, text[idx])

        return text
    
    def textProcesorForEnglish(self, text):
        for key, replacement in self.cleaning_rules_English.items():
            for idx in range(0,len(text)):
                text[idx] = re.sub(key, replacement, text[idx])

        return text
    
    def textProcesor_list(self, text):
        # input expected in 'list of list of string' format
        output_text = []
        for line in text:
            for key, replacement in self.cleaning_rules.items():
                for idx in range(0,len(line)):
                    line[idx] = re.sub(key, replacement, line[idx])
            output_text.append(line)

        return output_text


class TTSDurAlignPreprocessor:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer(),
                phonifier = Phonifier(),
                post_processor = DurAlignTextProcessor()):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer
        self.phonifier = phonifier
        self.post_processor = post_processor

    def preprocess(self, text, language, gender, phone_dictionary):
        # text = text.strip()
        print(text)
        text = self.text_normalizer.numberToTextConverter(text, language)
        text = self.text_cleaner.clean(text)
        print("cleaned text", text)
        # text = self.text_normalizer.insert_space(text)
        #text = self.text_normalizer.num2text(text, language)
        # print(text)
        text = self.text_normalizer.normalize(text, language)
        # print(text)
        phrasified_text = TextPhrasifier.phrasify(text)
        #print("phrased",phrasified_text)

        if language not in list(phone_dictionary.keys()):
            phone_dictionary = self.phonifier.load_lang_dict(language, phone_dictionary)

        print(phone_dictionary.keys())

        phonified_text = self.phonifier.phonify(phrasified_text, language, gender, phone_dictionary)
        print("phonetext",phonified_text)
        phonified_text = self.post_processor.textProcesor(phonified_text)
        print(phonified_text)
        return phonified_text, phrasified_text

class TTSDurAlignPreprocessor_VTT:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer(),
                phonifier = Phonifier(),
                post_processor = DurAlignTextProcessor()):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer
        self.phonifier = phonifier
        self.post_processor = post_processor

    def preprocess(self, text, language, gender):
        # text = text.strip()
        text = self.text_cleaner.clean_list(text)
        # text = self.text_normalizer.insert_space_list(text)
        text = self.text_normalizer.num2text_list(text, language)
        text = self.text_normalizer.normalize_list(text, language)
        phrasified_text = TextPhrasifier_List.phrasify(text)
        phonified_text = self.phonifier.phonify_list(phrasified_text, language, gender)
        phonified_text = self.post_processor.textProcesor_list(phonified_text)
        return phonified_text, phrasified_text


class CharTextPreprocessor:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer()):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer

    def preprocess(self, text, language, gender=None, phone_dictionary=None):
        text = text.strip()
        text = self.text_normalizer.numberToTextConverter(text, language)
        text = self.text_cleaner.clean(text)
        # text = self.text_normalizer.insert_space(text)
        #text = self.text_normalizer.num2text(text, language)
        text = self.text_normalizer.normalize(text, language)
        phrasified_text = TextPhrasifier.phrasify(text)
        phonified_text = phrasified_text # No phonification for character TTS models
        return phonified_text, phrasified_text

class CharTextPreprocessor_VTT:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer()
                ):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer

    def preprocess(self, text, language, gender=None):
        # text = text.strip()
        text = self.text_cleaner.clean_list(text)
        # text = self.text_normalizer.insert_space_list(text)
        text = self.text_normalizer.num2text_list(text, language)
        text = self.text_normalizer.normalize_list(text, language)
        phrasified_text = TextPhrasifier_List.phrasify(text)
        phonified_text = phrasified_text # No phonification for character TTS models
        return phonified_text, phrasified_text


class TTSPreprocessor:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer(),
                phonifier = Phonifier(),
                text_phrasefier = TextPhrasifier(),
                post_processor = DurAlignTextProcessor()):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer
        self.phonifier = phonifier
        self.text_phrasefier = text_phrasefier
        self.post_processor = post_processor
        
    def preprocess(self, text, language, gender, phone_dictionary):
        text = text.strip()
        text = self.text_normalizer.numberToTextConverter(text, language)
        text = self.text_cleaner.clean(text)
        # text = self.text_normalizer.insert_space(text)
        #text = self.text_normalizer.num2text(text, language)
        text = self.text_normalizer.normalize(text, language)
        phrasified_text = TextPhrasifier.phrasify(text)
        if language not in list(phone_dictionary.keys()):
            phone_dictionary = self.phonifier.load_lang_dict(language, phone_dictionary)
        phonified_text = self.phonifier.phonify(phrasified_text, language, gender, phone_dictionary)
        print(phonified_text)
        phonified_text = self.post_processor.textProcesorForEnglish(phonified_text)
        print(phonified_text)
        return phonified_text, phrasified_text

class TTSPreprocessor_VTT:
    def __init__(self,
                text_cleaner = TextCleaner(),
                text_normalizer=TextNormalizer(),
                phonifier = Phonifier(),
                text_phrasefier = TextPhrasifier_List()):
        self.text_cleaner = text_cleaner
        self.text_normalizer = text_normalizer
        self.phonifier = phonifier
        self.text_phrasefier = text_phrasefier

    def preprocess(self, text, language, gender):
        # print(f"Original text: {text}")
        text = self.text_cleaner.clean_list(text)
        # print(f"After text cleaner: {text}")
        # text = self.text_normalizer.insert_space_list(text)
        # print(f"After insert space: {text}")
        text = self.text_normalizer.num2text_list(text, language)
        # print(f"After num2text: {text}")
        text = self.text_normalizer.normalize_list(text, language)
        # print(f"After text normalizer: {text}")
        phrasified_text = TextPhrasifier_List.phrasify(text)
        # print(f"phrasified_text: {phrasified_text}")
        phonified_text = self.phonifier.phonify_list(phrasified_text, language, gender)
        # print(f"phonified_text: {phonified_text}")
        return phonified_text, phrasified_text