File size: 2,237 Bytes
922184b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large_v2-asd_v1
results: []
datasets:
- slplab/asd_apac
language:
- ko
pipeline_tag: automatic-speech-recognition
duplicated_from: slplab/whisper-large_v2-asd_v1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large_v2-asd_v1
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on [slplab/asd_apac](https://huggingface.co/slplab/asd_apac) dataset.
It achieves the following results on the validation set:
- Loss: 0.8553
- Wer: 78.4722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0617 | 10.53 | 100 | 0.6858 | 81.9444 |
| 0.004 | 21.05 | 200 | 0.7322 | 79.8611 |
| 0.0005 | 31.58 | 300 | 0.7923 | 80.5556 |
| 0.0003 | 42.11 | 400 | 0.8131 | 79.1667 |
| 0.0002 | 52.63 | 500 | 0.8263 | 76.7361 |
| 0.0002 | 63.16 | 600 | 0.8365 | 77.4306 |
| 0.0002 | 73.68 | 700 | 0.8451 | 78.4722 |
| 0.0002 | 84.21 | 800 | 0.8503 | 78.4722 |
| 0.0002 | 94.74 | 900 | 0.8541 | 78.4722 |
| 0.0002 | 105.26 | 1000 | 0.8553 | 78.4722 |
### Test results
- Loss: 0.6359
- Wer: 36.6876
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3 |