File size: 8,382 Bytes
1c1aff1 0a18727 1c1aff1 0a18727 2899fa9 1c1aff1 2899fa9 1c1aff1 2899fa9 1c1aff1 9eb7f45 374d046 9eb7f45 2899fa9 9eb7f45 1c1aff1 606f4d8 1c1aff1 606f4d8 1c1aff1 2899fa9 0a18727 1c1aff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
language: hi
datasets:
- common_voice
- indic tts
- iiith
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Hindi XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
- name: Common Voice hi
type: common_voice
args: hi
- name: Indic IIT (IITM)
type: indic
args: hi
- name: IIITH Indic Dataset
type: iiith
args: hi
metrics:
- name: Custom Dataset Hindi WER
type: wer
value: 17.23
- name: CommonVoice Hindi (Test) WER
type: wer
value: 56.46
---
# Wav2Vec2-Large-XLSR-53-Hindi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hindi using the following datasets:
- [Common Voice](https://huggingface.co/datasets/common_voice),
- [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
- [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices
Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the following two datasets:
1. Custom dataset created from 20% of Indic, IIITH and CV (test): WER 17.xx%
2. CommonVoice Hindi test dataset: WER 56.xx%
Links to the datasets are provided above (check the links at the start of the README)
train-test csv files are shared on the following gdrive links:
a. IIITH [train](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_train.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_test.csv)
b. Indic TTS [train](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_train_full.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_test_full.csv)
Update the audio_path as per the
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
## Load the datasets
test_dataset = load_dataset("common_voice", "hi", split="test")
indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv",
"test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload")
iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv",
"test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload")
## Pre-process datasets and concatenate to create test dataset
# Drop columns of common_voice
split = ['train', 'test', 'validation', 'other', 'invalidated']
for sp in split:
common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'])
common_voice = common_voice.rename_column('path', 'audio_path')
common_voice = common_voice.rename_column('sentence', 'target_text')
train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']])
test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']])
## Load model from HF hub
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"])
batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"])
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result on custom dataset**: 17.23 %
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).sub(unicode_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result on CommonVoice**: 56.46 %
## Training
The Common Voice `train`, `validation`, datasets were used for training as well as
The script used for training & wandb dashboard can be found [here](https://wandb.ai/thinkevolve/huggingface/reports/Project-Hindi-XLSR-Large--Vmlldzo2MTI2MTQ)
|