File size: 17,185 Bytes
4d6786b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd18838ae60>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd18838aef0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd18838af80>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd188391050>",
        "_build": "<function ActorCriticPolicy._build at 0x7fd1883910e0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fd188391170>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd188391200>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fd188391290>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd188391320>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1883913b0>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd188391440>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7fd1883634b0>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAACJsIHWHtR3LTE+3ofjZ7J3lWYhtWC5iMko7dICRrzBEfJVVKnD+Jlai1fGD/Vdehz1sVEmGJidCY4UMJ7P4FHw6shlFHLJ7veDtkqiD4hIWPBHb85g30RZ0Wu0GMG0bAt+VQUknprR8+i+HZ06T1pwK7/3YyaTd/2w0wgOYq4uzpN+c4DyL9puIOScYJOqfmIcUANLZX+YNTySNn/OXzG1Zv6R2pDrUaVFTTCo/baBGpWkazE7S87TAFCSM3eR4yLakphqXTETcIJvsAWe88gNk0rWd6R2yOmaJD+YQt20bmKwFVVJM2KblUla5jT+0oj9Thy2G7+CW8+YxzZFkt830Ft+vuqxvW1dk9vquKDt9O2TuKS7Q7A/k9GmIXA1XHzUx+t7jYWiBzY8hyqrQdVcqEoyHLDo/Umdw0wq63+Pl758HqBY7bfWrgBR/7b7dM4k2/k50ZGPNvIGWjULnUQrnQBHsi5m3VAU/eVXampi5Gt+X/nOZl4ZQLnZhKYddRXkIdSGCsPWv84Sv8mxuO5IeMOFfc2qUS48Nbyo35C9+3gm2/xpddzw+tjS3XAB7LkH9qavsLD1B7XZ0VCGkLUsLJdxE8jOZo0JUwtjLo25UWdD7rTYuyJ6aWg7o5vRD5LAgKZ23iZTdLtZVrabvW7oPy6KZMvJDihc8OSD+Cshhlw1DEsDAQU/yoyqstIx7y1CJWIeSoeUxGdaYtazvfyvJG9RHulKCiljaw2Lro5qiVi2N1H0iOTYxuSIfZebCfeacw//ppd98vl2TxOmmdkMOeR0mLcJ9f/NOebjddfVlyyWtzZvaNwIH1EIv0b1LdO+NW0ismWPXlZv0E+nN7Kz8BJSt77NuHyaEEYk89rIxAwHQOyRzJEZ6ELcqe6RkbQpmsTYtUtEuY2cS0oul9OpkWLfOw0Q78lemQQ2vSIyaTa/MfT27OzsKfbpTUCfWHVH+4VpsP9JzZga9H92cP+R1BzZg4YHhjiKbzlTUbZHOIfjl2RPRWPPTemDa/DZR8drF/BATHRZVazaPB6rZPAJ55QhIOB5EO1rgWBMRPhdNtGDqrt33r73s4rzf7yvpQ8l6eW0+LJG/kyIDhc0S8fQwJeBMyjGWw+VBbhB9bjaseQ5x6hctFDJnzwnTwZMpr9rDwVrOS00ffIUzkcWPmGv2Ch24zLuZP0c70WItuzr9cR0QU/Mqj/9tAnz201hh08MsMTYMYrZ2Wf/oEyZXFUVg75/i60Q9dOHzBwJwdPDu7nPeH4s9va1p2VwVSHomamTxWiRT8nrKO8HkdBd3qewKC9nQs7NooftrBhr6famh9pLKlrRAlhiLXkHe9sOUs8ASO4iz96pZIN2hCEeNHpaKNpzlJWg6E4HNDMW/wMiExxyhZgkndkzSG1MBYxmXRe9Tmr7nwdxTnvq8mOJUp/Dp2CX7noDS7pTofNQmeEuO0SwrtYAJjod3tfeWfwXdwAxwVOdVTQpEnkK5RQ56jTUb1FWpLak+Zq1MhSfa0YsmS/oq12si24qcdxh3lVaDS8m1kBHBoBC55/B4imd2Tu7y/vHhGVHK3XwIgasuM/YLLfEFspPRuksLm75rqCYvFYHcMFcxW7EWgk9YWrOSr0HR0SAftGO4D1dESyumnpjDC/RLBQRG+s1hDYJouPC6xBs8nOOnFmvwU7ra2EnN3tRHvOhmGmuOVzPxsSpV2seDdp/ij9SsO/6IwKxuoBDfx3pDoRK8htk0uf4AEy8oV6T8GI6qbezL8sMmdo1B7PYNe8QmjdFsT+P1ur9+BI+0TN2Lnv4RwVY5nHLOGrdcLn75VgfZqsR042db9TYzZNn+Xpv2V3AKvm2qyHWwNhjFkYm6jqJEq5ezej8yGQOrxhplDYHLvFGyimMz8VUu1y+ho7QTpTsusShXoHy1IsBOVuiFgSUc8wpmU6JWqbCEzd2p7Qy7q4LBj4+soSGhU3YtEvQyW6w3QnNFtZYkj4/wT4Qw3z8xvakCm9c4Z6l95Ute0TmLkJp6GEuwaA1ymQ+j2b9vcDB1BvLGgmz9ChlwvaD4J48KwYcJJ/9hqAZ0TnPG4Jyjmv2F9PbB4ZsLjKiH0XI3GXcnR2/Xix5Ynw+QTsOcC9mdBo3/NB1b/iybJRIooEZaAuXdO2lH5sym0gyuO3gqsckoNO+/eKqxt5cwFE8yjveNDI325HxxiK7nB9uRDXCpz+e8WIVmpQ4Ia2v1NRIb6EYwVILFVyLJ7cr7touEK2f58LR4mu/Pns0YG7xv/IHe3KXtlVjanicDolbag1lQLj2t2+pIoVlIaCcdCi9HbjArIypMask/vUbg0M8O7reYL7i8iUj4eNmQB43/blPX0pyhwp8jeu14y5ienxR3jTh6CCRUb9lZ49ylaONVmrtSilcIgmFFJ/ZBWzxTugGdqRUGxn9au76HRe4nPr6THRVC0+6s/wObmgDCrCfiBuS/jyRyowjDpApC8Vv/tIqng08DjA1QCpp9Qo4+/IMLux3+zOjRRWDfzB2iEzcqZOBHzOvNCqAB/z/VN2RRX6K3Fem1ZdwHeTuTOmJkejsosmv3nefRMx1zBtZemJbsqRm3m778GDYbCbYXYMKQrd666xjMLcdOL5wAMsodJTjGUC6Zs2DcKNaHzhIbUc6+xC9lVV4LRWK/RKVbMvD12U07d0sA0jwXv2/xBRcC0IA/ph5F+3+DjDjXUghdwxLauSUKYDLYL+SA5gAc49s56k4HN0w/keeNDBVhVTq/LecVkVNKoR/BC2Omu+wEDDlIZaymKco1Ajp8+7L39Tfd/3/32W+CTmwkt8NZBx4NrFtUkKDClt6zinF0CoDgH9xC1kQ1gz8W9T8RBZlbYyzDCVgmGpr6wRFJs9zqWROFVAzhQ2PTiAVpREXIHVH2BLoEePjjiPThvuBDOrxbXgUV4r5bn+dNMo/1W21fr9Oq2oZnYhnMxOdgE6OvnFdZJO/MwaxtZPWUw2rXgbB3TFpu8npE/sfsWcfE3CHCjw8RQIaTKpVm5FAnpSYEJgfAJR2cqQnGs8qz3u9dw+8IfWmzQsL7CojIlL6hRQpT55DTFICBbv1/8KZzeRtAI3/OaAZcxStZsxwbAu+AmIBBcbGbwiX5tA8AOPM0VgX2R+DiC7rXdyNzfl5PnF44ePECs6RSQpPpkODtI4Yh2ekiHO85cL9VKYuZzxb5SEtpXx/cs5Q+YMacLXD6QIW+vf9OA4IGzeNnkxPKeqsuloRGqgzoX0qQg8oZjOrtvSBS6CH/K7115UAf7cNKHFVyiz+dQeat9w+e9DVc31xVP4g1GIObif4O1CQx0gkYeVHOJUYZ5SUdJRijANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": "RandomState(MT19937)"
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAADfTy0VjHiGxI4BVLHKu8oDhauRvjRx2AaTrR80U8T33QWqEXEEyt2cXIVeCwJ2n3FVTRJBWkMl/AnmaX/KkobHhGpWW0FRiiuwjdgMIXiXFtyDuDUBOrU6PYw0kq5L4GFgoT8tXyp52YYYBoF8tX5HdnI8JiDXuMH3uJOiPG+GgEhtT/6HSgVyEyMquItn8tvV9bsvfrOCn0pUA2q0+i6geQnYxcEKUP/kadsrxXgR3tQ4clnC8lBiR7b2tlQ95YJOTDehuRcMq2AnnmbtZTNGa1ObBaL02V/XuEwPuTusDP+ouRUCwSjEohtgydxU3wR+ozrHmhHhK8QJRVWuFI64mHXwH52N5nkpmp0gTw4NOqlC38G9vY+xlW22Idrro5JYoY0N5uTAkBqN8097lIGXevMoCcfcyuQ3CkeDGddtCDepQV0v21qa6BiFwp5ip4Pg3NQLMXeEKo6CRvyE4uowGMCjU57Y8xHKtGsEbHqMmi9FNtpb4BVMzPca1/EPE0VsEnztxIlD19F94lg5Bog+J0k0GGmaSvD15ieLmKrw5UE5Fb+B4D4vU3UFMd+VCZlo99NQ1al1GNcjtzSLCklQhUUHIpqMzagsf6kfwSxiGCB69YY4c1GAojuIqVa5Dw51ekTxOhn6YN8Tp9NMRVGaGUnGZhfavA/5ec416S61wSe//7EcHICD/4cj/GBO+dQkqXhFHEDKVoUpbbAXGK3N6q5R+8i35DTi6jPk5iHNrw7eqqTbHYVyGR/dC4r59zZHH8zz9NhcFusslW4fd5EuEMK85yQ+oIyyKIT8etIgTDYtE53zaQaxADntWTB8JC23Mm7zdv9gtm7E4YTDk5RW9xORD9Olf9h3xnOJuESWE1fts1grqgAHkvhCrzX5xzkRr//T/SgNk4qna6NzGBUOc4E8OtsB+WLvzJMiI6Vq3lZtiGDYvxqv6Yc82N2rtXzKxd0Y6XWl1tPKzrOlMDnaLAugMtbzJ55PKQpCs4WDEm6uqOj3xYuRFI3z+GpaHQKUm3/1nkwKgmi90D7kwRmAENGt4nbsR8Mh+j4oa01MYxMKNwXbn15ruojEIAO2S0zsVz1mP3xhVqhZj0srV/1ML4esjhcGXsm4yluEzMrJUKIeVnQrihFsn0wJ8XsCsm+HpjHHJv/sQI0l+HcauYSYls6DWMl6rvW7rkccsHSLVVzaa0MApylXGRQlDh5IwiVt/24hpJTnx7xsyoylZ2nPSpujSvZKTCIF1LZr5pRpSH/2RA9NzIaWPEi02j9vFbM2+LSkcc8vHZsR3NOli7cXIEYZQ1vXBU5q8EZL/bT4kLh6xIKS38mrGb3N0/KTICABMP6VQgCgfBRtY0vWGEWsJ4EyKTHFeOF7rwPfp1ZKjfcvJCsUnRQHx8qCjq7kVw3VESvjwquAd+fueqAJl891UU/0G3Y4MUkd5xGg+3kuJX3Hgp/+2d+8uqWX7BMvJVDXw0kNgI4yMZG/b1qrPa22ZjDG0yKQHekMrD/t2vjLYvD/DW/C7fmydOx19D6/tKsWO/MDrXxMHpM+hiMnz0QbDGD2QJXUw0CscWA4gt4Xh1dPdPCC7Q8eFfb+fOerVlO4N6DMszai+8HNQ1Acy82/8xmZxDPETVqBQeuy7PunZlpng3oENSeTFpz48px1S+CPaAnz/Ezt+0UBDeju3KCkLQ72z+/orUjDEcdwEIBYjDficY/S3pbYTlErxt42JlFoo0Cbqf2lzpV35qythjCmzMfTpTSRwUA+duiyNVWTFqAEVxErbszh5NxjsDuvbf60iB+f+sH/CBBbcpv+SslF59/SWKh2mMsObe5KGGJh6jdZWEhuFpBwJTxEhS8pilluYP6iClj6jZFTsFXPYKlEV6f8ZqYlztAvR/EPRh6EmVWoLSmQvI5tRxrFkwCiDAgHrhBsYebMgtXx2FSVL/1dAFAK9UIDwSIS41lXEOqfwWidI83wi6GgcHNlOuyX/4HLMAaEQ2003jz67hBgUrZHfbqn/JBhl7QDxO5UXJg8xsIXoQIWQ9lm6m7GIybkQc0TqoS2oJ76F2dB4rNWjkRyY5j6uU9t+BeA5+pBxn/oOVstwraCSDerfEUHI+rP2mVSwIDyNbrWN0ne9AEVMxonI/y9tL9m1hsv3wesqlzPa6z44YlfGUu9a/gQVxkGbY72ZGbcOpcT183chjOSdtIkUdnj4QHG/3bKgYHYHOVjU2TklGF+P/UKYnagEa2DZNiCB997PS/eAFTx9bC38svXFXgQALpBbOPj78Z/ECDyyNf0aBzHfKyRLPWgGNO+V6FcExd9Jh48RlmbCBsN1t9JRTy1t3vqjJSJj8GZFdVm0stEK5QyGvtEPOz4q15XOg01oEtDCXZ5f6QLKRpgrARDk/VwkPFeOLR/ffZY8ZjRcYZ06YDwzWNw/S/6EXmRsl1p/BSA2bOdr/han9SAD94uqwkWLAlgnj2BgyI2Dg/Ztjw039cEGan3HeCaBtJ1pyIKhCZwwbmmcTgjj84fcH3YjTUOPhOhNv1G5Yxu2wUeQuU65+1ZZAlU3sHYONUZAZtQ95UKhEQcU2j+JMTtpfez1CiuBsNoidZNzK9MZhIaElKtyooYwrJFrdk7q6yiY3ASBdt18mEiCgBg42OoIvhg7icVA71/nDMtGFxbMwluvIPBDQZhn+LyQdLiANgOerU4NKwPp7u0SJ4dipK1ED7WNv+/MXY2AvCUwS9AsDyGTPl6LBQIMaDOS1zab6RkCybh8wDNHaWBSUddw48ZxQUu28Db3qO2fX8kL1SZq1VkyEYTja+wV4ba5Yma/1DZzwNuKB9vIF97amgGEM6nCdeU9y06XykgjzTbmeiKQ9hzefuuMpxShcEMVwXFRHMAlVnfA8TyHDz0uRwQncWy5HjPXPs3nfQoPOSyI72DsWBJHUwBMDYW/bhqOq84iDabTW8hVdsKzYfTrwpTagjk7LBhyI/HKYWZiMZDchpA6zqojXLss4od0CrQIeDkFWjnCTYsYS5hxOcC+I5q8lqNE3YigcWYBwWUTuvBIDMzkW1ZRDUMmrssFRA40Q5XnCr7RKdKssmFIv1SBQeUkqj6LCBAO03d3w3bolAKjMg2EwAx1Loc4gljVvTgMARpkJyycJGC7t8mbqfXSVFEE/zZngtVeXvmNcWJ0mkNxPdH9pQ+j2lP+6rNhSkIXQRK10gydw5PWZXSQIXMOiF1vbiBpTVmaA+JXxzeperOoGJbWtxg+lprtD4ahsP2Nd5WRXKDWUUMSd9eJbP5mJx9Gju0Cmx1gkQHPoKCejPm6yi4m3bwmPaqj3BsYqZPELqpLEOnNx5R0lGKMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": "RandomState(MT19937)"
    },
    "n_envs": 1,
    "num_timesteps": 5120,
    "_total_timesteps": 5000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1655474054.2201161,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgxi0Hvkazrz+Txge/OmOjvuRMmz4LEd69AAAAAAAAAACUdJRiLg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.02400000000000002,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gASV8AMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi4wOSMJQSECUhpRSlIwBbJRL24wBdJRHQG7lSsKb8WN1fZQoaAZoCWgPQwhmLnB5rKk5QJSGlFKUaBVLx2gWR0Bu7qDRMN+cdX2UKGgGaAloD0MIbhYvFoZiScCUhpRSlGgVS5RoFkdAbvUplz2ex3V9lChoBmgJaA9DCNJSeTvC6Q9AlIaUUpRoFUu5aBZHQG79YB/7SAp1fZQoaAZoCWgPQwiCO1CnPHr3v5SGlFKUaBVLmGgWR0BvA+gYgq3FdX2UKGgGaAloD0MIT85Q3PGm6b+UhpRSlGgVS9VoFkdAbxd0cOskp3V9lChoBmgJaA9DCL+7lSU6vz5AlIaUUpRoFUuYaBZHQG8eUMXrMTx1fZQoaAZoCWgPQwg1RBX+DBxdwJSGlFKUaBVLwGgWR0BvJtYyO7xvdX2UKGgGaAloD0MI8ZwtILRqTECUhpRSlGgVS7poFkdAby9zySV4YHV9lChoBmgJaA9DCAK8BRIU3yBAlIaUUpRoFU0MAWgWR0BvO/h4t6HCdX2UKGgGaAloD0MIRBX+DG8GOsCUhpRSlGgVS65oFkdAb00fJ3gUDnV9lChoBmgJaA9DCMST3czoFx5AlIaUUpRoFUvqaBZHQG9X2TX8O091fZQoaAZoCWgPQwj7zcR0IZ4wwJSGlFKUaBVLuGgWR0BvYBRwZOzqdX2UKGgGaAloD0MIOnR63o1lUcCUhpRSlGgVS69oFkdAb2e4uscQy3V9lChoBmgJaA9DCIQSZtr+MUvAlIaUUpRoFUvPaBZHQG9xFdC3PRl1fZQoaAZoCWgPQwhRSghW1U1RQJSGlFKUaBVN6ANoFkdAb8ctq59Vm3V9lChoBmgJaA9DCLe28LxURDZAlIaUUpRoFUuvaBZHQG/PC5VfeDZ1fZQoaAZoCWgPQwisG++OjOUTwJSGlFKUaBVLf2gWR0Bv3gGY8dPtdX2UKGgGaAloD0MIsr6ByY2RYMCUhpRSlGgVTQwBaBZHQG/qbWuoxYd1fZQoaAZoCWgPQwghsd09QPFCQJSGlFKUaBVL3GgWR0Bv9Fucc2itdX2UKGgGaAloD0MIhzQqcLJROsCUhpRSlGgVS7xoFkdAb/wrmQr+YXV9lChoBmgJaA9DCMGtu3mqUUvAlIaUUpRoFUuhaBZHQHABevUz9CN1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 220,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}