File size: 1,664 Bytes
c51db28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
import numpy as np
import pickle
import tensorflow as tf
from tqdm import tqdm
from keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D
from keras.applications.resnet50 import ResNet50, preprocess_input
from numpy.linalg import norm
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = tf.keras.Sequential([
model,
GlobalMaxPooling2D()
])
def extract_features(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
return normalized_result
root_folder = 'kitpotproduct'
feature_list = []
filenames = []
for root, dirs, files in os.walk(root_folder):
for file in tqdm(files):
if file.lower().endswith(('.png', '.jpg', '.jpeg','PNG','JPG','JPEG')):
img_path = os.path.join(root, file)
try:
img = image.load_img(img_path, target_size=(224, 224))
filenames.append(img_path)
feature_list.append(extract_features(img_path, model))
except (OSError, IOError, ValueError, Exception) as e:
print(f"Error processing file: {img_path}")
print(f"Error message: {str(e)}")
continue
with open('res_vector_embeddings.pkl', 'wb') as f:
pickle.dump(feature_list, f)
with open('res_filenames.pkl', 'wb') as f:
pickle.dump(filenames, f) |