File size: 3,584 Bytes
d99f7ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---

language:
  - en
---


# Model Card for `passage-ranker-v1-L-en`

This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.

Model name: `passage-ranker-v1-L-en`

## Supported Languages

The model was trained and tested in the following languages:

- English

## Scores

| Metric              | Value |
|:--------------------|------:|
| Relevance (NDCG@10) | 0.466 |

Note that the relevance score is computed as an average over 14 retrieval datasets (see
[details below](#evaluation-metrics)).

## Inference Times

| GPU                                       | Quantization type |  Batch size 1  |  Batch size 32 |
|:------------------------------------------|:------------------|---------------:|---------------:|
| NVIDIA A10                                | FP16              |           2 ms |          27 ms |
| NVIDIA A10                                | FP32              |           4 ms |          82 ms |
| NVIDIA T4                                 | FP16              |           3 ms |          63 ms |
| NVIDIA T4                                 | FP32              |          13 ms |         342 ms |
| NVIDIA L4                                 | FP16              |           2 ms |          39 ms |
| NVIDIA L4                                 | FP32              |           5 ms |         119 ms |

## Gpu Memory usage

| Quantization type                                |   Memory   |
|:-------------------------------------------------|-----------:|
| FP16                                             |    550 MiB |
| FP32                                             |   1100 MiB |

Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.

## Requirements

- Minimal Sinequa version: 11.10.0
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)

## Model Details

### Overview

- Number of parameters: 109 million
- Base language model: [English BERT-Base](https://huggingface.co/bert-base-uncased)
- Insensitive to casing and accents
- Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)

### Training Data

- Probably-Asked Questions
  ([Paper](https://arxiv.org/abs/2102.07033),
  [Official Page](https://github.com/facebookresearch/PAQ))

### Evaluation Metrics

To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.

| Dataset           | NDCG@10 |
|:------------------|--------:|
| Average           |   0.466 |
|                   |         |
| Arguana           |   0.567 |
| CLIMATE-FEVER     |   0.162 |
| DBPedia Entity    |   0.363 |
| FEVER             |   0.721 |
| FiQA-2018         |   0.304 |
| HotpotQA          |   0.680 |
| MS MARCO          |   0.342 |
| NFCorpus          |   0.346 |
| NQ                |   0.487 |
| Quora             |   0.779 |
| SCIDOCS           |   0.150 |
| SciFact           |   0.649 |
| TREC-COVID        |   0.683 |
| Webis-Touche-2020 |   0.287 |