File size: 2,785 Bytes
2664f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
language:
- en
---
# Model Card for `answer-finder-v1-S-en`
This model is a question answering model developed by Sinequa. It produces two lists of logit scores corresponding to the start token and end token of an answer.
Model name: `answer-finder-v1-S-en`
## Supported Languages
The model was trained and tested in the following languages:
- English
## Scores
| Metric | Value |
|:--------------------------------------------------------------|-------:|
| F1 Score on SQuAD v2 with Hugging Face evaluation pipeline | 79.4 |
| F1 Score on SQuAD v2 with Haystack evaluation pipeline | 79.5 |
## Inference Time
| GPU | Quantization type | Batch size 1 | Batch size 32 |
|:------------------------------------------|:------------------|---------------:|---------------:|
| NVIDIA A10 | FP16 | 1 ms | 10 ms |
| NVIDIA A10 | FP32 | 3 ms | 43 ms |
| NVIDIA T4 | FP16 | 2 ms | 22 ms |
| NVIDIA T4 | FP32 | 5 ms | 130 ms |
| NVIDIA L4 | FP16 | 2 ms | 12 ms |
| NVIDIA L4 | FP32 | 5 ms | 62 ms |
**Note that the Answer Finder models are only used at query time.**
## Gpu Memory usage
| Quantization type | Memory |
|:-------------------------------------------------|-----------:|
| FP16 | 300 MiB |
| FP32 | 550 MiB |
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.
## Requirements
- Minimal Sinequa version: 11.10.0
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
## Model Details
### Overview
- Number of parameters: 33 million
- Base language model: [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased)
- Insensitive to casing and accents
### Training Data
- [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/)
|